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ABSTRACT

A Foreign Function Interface (FFI) is a mechanism that allows software written in one

host programming language to directly use another foreign programming language by

invoking function calls across language boundaries. Today’s software development

often utilizes FFIs to reuse software components. Examples of such systems are the

Java Development Kit (JDK), Android mobile OS, and Python packages in the Fedora

LINUX operating systems. The use of FFIs, however, requires extreme care and can

introduce undesired side effects that degrade software quality. In this thesis, we aim to

improve several quality aspects of software composed of FFIs by applying static analy-

sis.

The thesis investigates several particular characteristics of FFIs and studies software

bugs caused by the misuse of FFIs. We choose two FFIs, the Java Native Interface

(JNI) and the Python/C interface, as the main subjects of this dissertation. To reduce

software security vulnerabilities introduced by the JNI, we first propose definitions of

new patterns of bugs caused by the improper exception handlings between Java and C.

We then present the design and implement a bug finding system to uncover these bugs.

To ensure software safety and reliability in multithreaded environment, we present a

novel and efficient system that ensures atomicity in the JNI. Finally, to improve software

performance and reliability, we design and develop a framework for finding errors in

memory management in programs written with the Python/C interface. The framework

is built by applying affine abstraction and affine analysis of reference-counts of Python

objects. This dissertation offers a comprehensive study of FFIs and software composed

of FFIs. The research findings make several contributions to the studies of static analysis

and to the improvement of software quality.

1
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CHAPTER 1

INTRODUCTION

1.1 Foreign Function Interface

A Foreign Function Interface (FFI) is a programming language interface that allows

software code written in one programming language (i.e., host language) to use soft-

ware code written in another programming language (i.e., foreign language) in the form

of invoking function calls or method calls across the boundaries of the two languages.

Fig. 1.1 illustrates a conceptual definition of an FFI. It acts as a gluing layer that con-

nects the code together for two software components written in different programming

languages.

FFIs offer flexible and convenient interoperability between languages. For example,

a programmer can design and implement a software component in a high-level language,

like Java, while leveraging on an existing software component, such as one written in C.

She can do so by simply snapping together the different components with the help of an

FFI.

Figure 1.1: A conceptual definition of an FFI.

2
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1.2 Software composed of FFIs

Today’s software development demands faster time-to-market as well as more reliability

and higher system performance. The use of FFIs allows programmers to achieve these

goals. Programmers can focus on introducing and developing new functionalities while

leveraging FFIs to connect together existing libraries and system software that offer the

more common and standard functionalities. For the most part, these libraries and system

software are proven over the years for their reliability and performance.

Many well-known software systems are composed of FFIs. Examples include the

Java Development Kit (JDK), Android mobile OS, and the Python packages in the Fe-

dora LINUX operating systems. The JDK is packaged with core system libraries such

as file compression utilities and math libraries. These libraries are written in C/C++.

In order to interoperate with these libraries, there is a large set of Java Native Interface

(JNI) code that glues together the Java code and the C/C++ code. The popular Android

mobile OS is another example of systems composed of FFIs. It includes a Java Virtual

Machine implementation (i.e., Dalvik) and a kernel written in C/C++. To interoperate

between the virtual machine and the kernel, JNI code is used in the Android mobile OS.

Table 1.1 shows a set of other popular real-world JNI applications.

Another example of systems composed of FFIs is the Python packages in the Fedora

LINUX operating system. These packages are written in Python. Like the JDK, they

often take advantage of the standard and system libraries that already exist and written

in C/C++. Python code interoperates with the C/C++ code by the use of the Python/C

interface. Table 1.2 lists some of these popular Python/C packages [2].

3
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JNI Package Description

java-gnome A package that allows Java to use the
GNOME desktop environment [34].

jogl A library that allows OpenGL to be used in Java [36] .
libec A library for elliptic curve cryptography.
libreadline A package that provides JNI wrappers for accessing

the GNU readline library [52].
posix A package that provides JNI wrappers for accessing

OS system calls [71].
spread An open-source toolkit that provides a high performance

messaging service across local and wide area
networks; it comes with its default JNI bindings [83].

Table 1.1: Popular real-world JNI applications.

1.3 Issues with FFIs and software quality

While the use of FFIs brings much convenience and efficiency in software development,

it at the same time introduces plenty of side effects that can degrade software quality.

We next take a look at some key intrinsic characteristics of FFIs and the effects these

characteristics have on quality of software composed of FFIs.

1.3.1 Issues with FFIs

Programming with FFIs is an error-prone process. A programmer needs to know thor-

oughly about both host programming languages and foreign programming languages,

especially the differences between the two. Some of the differences are obvious, such

as program semantics, language syntax, and type systems. But some are subtle, such

as exception handling and memory management. She also needs to have a good under-

standing of the proper use of FFIs. All of these pose challenges in writing correct and

bug-free code.

4



www.manaraa.com

Python/C Package Description

krbV A library that allows python programs to use
Kerberos 5 authentication and security.

pycrypto A collection of both secure hash functions
and various encryption algorithms.

pyxattr A extension module wrapper for libattr, which allows
for various file and directory operations.

rrdtool Round Robin Database Tool to store and
display time-series data.

dbus A message bus system, a simple way for applications
to talk to one another.

gst A wrapper that allows GStreamer applications
to be written in Python.

canto An Atom/RSS feed reader for the console that
is meant to be quick, concise, and colorful.

duplicity An utility that backs up files and directory.
netifaces A library to retrieve information about network interfaces.
pyaudio A library that provides Python bindings for PortAudio,

the cross-platform audio I/O.
pyOpenSSL A Python wrapper module around the OpenSSL library.
ldap A library that provides an object-oriented API

for working with LDAP within Python programs.
yum A Python library for software package manager that

installs, updates, and removes packages on RPM-based systems.

Table 1.2: Popular Python/C packages in the Fedora LINUX operating system.

The discussion below reviews some typical differences between host programming

languages and foreign programming languages in the context of FFIs, and the type of

bugs that can be caused by these differences. The host programming languages sug-

gested here are the typical high-level languages like Java, C#, and Python. The foreign

languages can be native languages, like C, C#, and assembly.

Exception handling

Modern programming languages like Java and C# have managed environments where

errors and exceptional situations are handled within the environments. Managed envi-

5
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ronments provide better security assurance to software systems, where faulty code in

software won’t easily become security vulnerabilities. With the use of FFIs, however,

this security model can be broken. By using the JNI, for example, code written in C and

C++ can throw Java exceptions. But, these exceptions are outside the normal control of

the managed environment of Java, that is, the JVM. Unless programmers diligently en-

sure exceptional situations are handled properly, hackers can craft clever security attacks

by taking advantage of the faulty code.

Thread and concurrency model

Modern programming languages also often have support for multithreaded program-

ming. To ensure thread-safety, many of these languages provide mechanisms to permit

only one thread to execute a protected region of code at a time. This notion is known as

atomicity. Individual programming languages may have different mechanisms in ensur-

ing atomicity. In general, to ensure atomicity is difficult and challenging. In the context

of FFIs, this can be even more complex, involved, and error-prone.

Memory management

Java, C#, and Python have memory management systems. The memory management

systems are responsible for making allocated memory available and cleaning up memory

that are no longer needed. Programmers are freed from the task of manually managing

memory resources in these languages. C/C++ does not have an automatic memory man-

agement system. When programming with FFIs whose foreign languages are C/C++,

programmers need to be keenly aware of this difference and take appropriate actions

to ensure memory resources are managed correctly. For instance, memory resources

6
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allocated in a foreign language can be out of reach of the memory management of a

host language and cannot be reclaimed automatically. Programmers cannot assume the

resources are cleaned by the managed environment and have to make sure the memory

resources are reclaimed manually.

1.3.2 Software quality issues

In this section, we discuss software quality issues that we are concerned with and outline

our objectives in addressing these issues. By quality, we are primarily interested in the

following set of attributes: security, reliability, safety, and performance.

Security

A secure software system composed of an FFI means that the system cannot be ex-

ploited in its FFI layer for security attacks. That is, having an FFI in a software system

should not make the system less secure. We intend to explore bug patterns introduced by

FFIs that can introduce security vulnerabilities and show how one can protect software

composed of FFIs against these types of attacks.

Reliability

Software should not become less reliable by employing an FFI in the system. Specifi-

cally, exceptional situations in the FFI should not cause the system to behave unexpect-

edly. We are interested in identifying sources of these potential reliability issues and

types of bugs in the system.
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Safety

By safety, we mean multithreaded safety in software systems composed of FFIs. Mul-

tithreaded safety has been studied extensively before but primarily for single-language

systems. These safety issues commonly involve data integrity, thread synchronization,

race condition, and deadlock. In recent years, there have been studies on thread atom-

icity, which is a stronger guarantee than race-free condition. But, few if any of these

studies have explored on multi-lingual systems involving FFIs, partly due to the com-

plexity and difficulty in studying such systems. We are interested in taking up this

challenge and investigate thread atomicity in software systems composed of FFIs. The

safety is expected to be achieved without outsized performance overhead.

Performance

A software system’s performance should not be impacted by having FFIs. After all,

many programmers choose to use FFIs for the purpose of achieving higher performance;

native code components in general perform better than those written with host program-

ming languages. However, that assumption is not guaranteed and can be defeated if

care is not taken while programming with FFIs. We aim to identify performance issues

introduced by having FFIs, in particular, those related to memory management. We

are interested in finding the commonly known problems like memory leak and dangling

pointers in software composed of FFIs.

8
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1.4 Challenges and motivations

FFIs present unique challenges in both identification of the bug patterns and the design

of suitable solutions to find these types of bugs.

Bug definitions are not always easy because of their subtlety, little previous expe-

rience, and complexities involved. The identification of bug patterns is to accurately

describe the unique situation when a bug is caused by an FFI. These types of bugs are

subtle and not easily discernable. Even when they do surface, they can be mistakenly

seen as the same as those in software without FFIs and hence overlooked and never

uncovered. There had been little research done in the systematic identification of bugs

caused by FFIs, whether empirical or experimental. This requires keen knowledge of

both the host and the foreign programming languages, in particular in areas like type

systems, exception handlings, memory management, and thread models. Furthermore,

to precisely define what a bug is requires in-depth understanding of the interactions of

the two programming languages through the use of an FFI and the impact from the FFI

itself during the interactions.

Finding bugs and hence solutions to software quality issues can also be challenging

in the context of FFIs. The challenges stem from finding suitable solutions that are ef-

fective, accurate, and efficient. Typically, there are two means for finding software bugs:

dynamic analysis and static analysis. This is also true for finding bugs in FFIs. In dy-

namic analysis, bugs are discovered during an execution or the runtime of the software.

And, this is typically achieved by manually written tests. Because of the particular layer

where an FFI exists in code and the functional purpose of the FFI, it is rather difficult to

trigger a bug to manifest in the FFI. To ensure software free from quality issues caused

by the FFI, which is to find all the possible bugs in the FFI, would require lots of manual
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tests hence incur a large amount of overhead in time and efforts. Static analysis, on the

other hand, requires no runtime overhead. With static analysis, bugs are uncovered by

scanning the code1 of software, which can be done relatively quickly. In addition, when

static analysis is designed appropriately, it can find all possible bugs in software. The

downside of static analysis, however, is that it may find bugs that are not true bugs, that

is, false positives.

1.5 Previous work and open problems

There have been increased interests in recent years in the study of programming inter-

operability, in particular, the use of FFIs, FFIs’ effects on software, and ways to mitigate

some of the negative effects FFIs bring to software quality. In this section, we highlight

the most significant work in recent years and overview open problems that still need to

be addressed.

A few recent studies reported hundreds of interface bugs in JNI programs ([26, 40,

86]) by using type systems, experimental studies, and empirical studies, respectively.

Errors occur often in interface code because FFIs generally provide little or no support

for safety checking, and also because writing interface code requires resolving differ-

ences (e.g., memory models and language features) between two languages. Past work

on improving FFIs’ safety can be roughly classified into several categories: (1) Static

analysis has been used to identify specific classes of errors in FFI code [25, 26, 87, 40];

(2) In another approach, dynamic checks are inserted at the language boundary and/or

in the native code for catching interface errors (see [45]) or for isolating errors in native

1Static analysis can scan either source code or binary code. In this dissertation, static analysis is

performed on software source code.
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code so that they do not affect the host language’s safety [85] and security [80]; (3) New

interface languages are designed to help programmers write safer interface code (e.g.,

[31]).

There are still many open problems despite recent advancements in this research

area. First and foremost, identifications of bugs or bug patterns that exist in software

composed of FFIs have just begun. The types of bugs reported thus far consist only a

small set of problems and touch only a few software quality issues; we believe there

are more types of bugs that are unique in these systems, as demonstrated in our later

chapters. Definitions of bugs in FFIs cannot simply assume the same bugs that exist

in single-language systems are applicable here. They require a fresh look of software

and demand in-depth understanding and analysis of FFIs. Secondly, there are only a few

proposed solutions that are suitable or general enough to find bugs in software composed

of FFIs. As discussed earlier, finding accurate, efficient, and scalable solutions requires

designing and building new methods and frameworks. In the case with static analysis

approach, the challenges continue to be the ability of having sound systems (i.e., ones

that leave no false negatives) while achieving low false positives. Third, bug finding

tools designed in research settings, especially in the area of FFIs, are still off-limits in

practice for the most part for programmers who develop software using FFIs. This is

because: 1) the tools may not be that easy and practical to be used and 2) the bugs

reported are not always of practical importance. Our research aims to address some of

these open problems, and to provide more comprehensive solutions and discussions in

this area. We hope to provide a concrete set of tools that programmers can use in finding

quality related bugs in their software development.
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1.6 Thesis statement

Software systems often use components written in Foreign Function Interfaces (FFIs)

for the purpose of development efficiency and high system performance. Such software,

however, can suffer in quality because of possible misuse of FFIs. In this thesis, we

present systems designed and built by applying static analysis of source code of software

composed of FFIs to identify bugs that can cause software quality issues.

The systems presented in this dissertation are effective and accurate; experimental

results demonstrate that our systems can find bugs with very low false negatives and low

false positives. The systems are also scalable and efficient; they can scan large software

systems quickly and efficiently.

1.7 Static analysis

Static analysis is the study of software code (source code, binary code, or both). We

choose static analysis as the main methodology to tackle the open problems discussed

earlier because of the following reasons. First, differing from dynamic analysis, which

requires an actual execution of a software system, static analysis does not require the

running of the software system. It introduces no runtime overhead compared to dy-

namic analysis. Second, many types of quality related issues can only be feasibly found

by static analysis but not by dynamic analysis because static analysis can examine every

control flow path of a program and offer assurance in finding all these issues. That is,

when applied in a sound and safe manner, static analysis produces no false negatives.

Finally, applying static analysis in software composed of FFIs requires an in-depth study
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and novel improvements of static analysis, which evokes great intellectual curiosity, in-

terest and creativity. Static analysis has been studied extensively in the past in program

verification but primarily in software systems composed of a single programming lan-

guage. To apply static analysis in FFIs is a new exciting adventure and requires: 1)

in-depth knowledge of static analysis, 2) rigorous studies and research in the area of

programming languages and software engineering, and 3) proposals of novel improve-

ments and applications of static analysis to address the unique and challenging issues in

software composed of FFIs. Because of these reasons, we choose to use static analysis

as the primary approach for finding bugs and for improving quality of software systems

composed of FFIs.

1.8 Overview

We now present an overview of the research conducted in this dissertation.

1.8.1 Exception analysis in the JNI

Software composed of the Java Native Interface (JNI) often has security and reliabil-

ity issues. We introduce an exception analysis framework TurboJet to address these

issues. This framework is built by applying several static analyses and our proposed

improvements on these techniques. The framework finds exception-related bugs in JNI

applications. Specifically, it finds bugs of inconsistent exception declarations and bugs

of mishandling JNI exceptions. TurboJet is carefully engineered to achieve both high

efficiency and accuracy. We have applied TurboJet on a set of benchmark programs and

13



www.manaraa.com

identified many errors. We have also implemented a practical Eclipse plug-in based on

TurboJet that JNI programmers can use to find errors in their code.

1.8.2 Atomicity enforcement in the JNI

Atomicity enforcement in a multithreaded application can be critical to the applica-

tion’s safety and reliability. In this project, we take the challenge of enforcing atomicity

in a multilingual application, which is developed in multiple programming languages.

Specifically, we describe the design and implementation of JATO, which enforces the

atomicity of a native method when a Java application invokes the native method through

the JNI. JATO relies on a constraint-based system, which generates constraints from both

Java and native code based on how Java objects are accessed by threads. Constraints are

then solved to infer a set of Java objects that need to be locked in native methods to

enforce the atomicity of the native method invocation. We also propose a number of

optimizations that soundly improve the performance. Evaluation through JATO’s proto-

type implementation demonstrates it enforces native-method atomicity with reasonable

runtime overhead.

1.8.3 Reference count analysis in the Python/C interface

Python programmers can write software (also known as Python “extension modules”)

in C/C++ with the help of the Python/C interface. As discussed earlier, native code

in the Python/C interface are outside Python’s system of memory management; there-

fore extension programmers are responsible for making sure these objects are reference

counted correctly. This is an error prone process when code becomes complex. In
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this project, we propose Pungi, a system that statically checks whether Python objects’

reference counts are adjusted correctly in Python/C interface code. Pungi transforms

Python/C interface code into affine programs with respect to our proposed abstractions

of reference counts. Our system performs static analysis on transformed affine programs

and reports possible reference counting bugs. Our prototype implementation found over

150 bugs in a set of Python/C programs.

1.9 Contributions

This dissertation makes several contributions in areas of improving software quality,

static analysis, and research of FFIs. Specifically, this dissertation gives clear defini-

tions of bug patterns that affect quality of software composed of FFIs, proposes a set

of concrete tools that can be used to find these bugs, and identifies important bugs in

real-world software applications.

First, it is among the first to clearly identify a set of software bugs in FFIs. Because

of the challenges in understanding the intricacies of programming languages, their com-

plex interactions through the use of FFIs, and the context under which bugs can arise,

the bugs that we are interested in are subtle and not easily discernable but all have

critical implications. Clear and accurate definitions of the bugs provide the basis of

comprehending the problems and identifying the solutions needed. In this thesis, we

give precise definitions of a number of bug patterns. For example, in the analysis of

exception handling in the JNI, we define a particular bug pattern of mishandled Java ex-

ceptions that can cause security vulnerabilities in the JNI. This bug pattern is unique and

has not been studied previously. For this type of bugs to manifest, two conditions must
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satisfy: 1) a pending exception at a program point in the JNI code, and 2) the operation

immediately follows the program point is a dangerous operation. This definition of the

bug pattern gives us a clear objective on what our tool needs to identify in order to find

these types of bugs.

Second, we demonstrate that finding the bugs that we are concerned with is tractable,

can be achieved by using static analysis, and can be done with accuracy and efficiency.

We strive for soundness in the design of all our systems. By soundness, we mean a

system should produce no false negatives. We rigorously and conservatively inspect all

aspects of a program. We factor these considerations into the selections among different

static analyses and the designs of final systems. Experimental results show that all

our systems are able to achieve satisfactory accuracy. Our systems are also efficient

and scalable. The systems are designed with reasonable engineering trade-offs. For

example, by focusing only on the code that actually has effects on the reference-count

changes of Python objects in the Python/C interface, the two-stage system we propose

omits code that has no relevance in the bug finding, allowing the system to analyze entire

software systems very quickly.

Third, we introduce a number of improvements on the static analyses that were cho-

sen in our systems. The improvements are novel and essential in addressing the unique

challenges we face in finding the particular types of bugs in software systems. The im-

provements enable us to achieve accurate bug finding as well as efficiency. For example,

in the finding of bugs caused by mishandled Java exceptions and inconsistent Java ex-

ception declarations, we propose a context-sensitive analysis as improvement on a pre-

vious proposed program analysis [17]. This improvement allows us to find the types of

bugs more accurately. Another example is in the finding of reference-count errors in the

Python/C interface. A previous study [42] proposed a system that uses affine-analysis
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for finding reference-count bugs. Our system improves upon that study by introducing

escape-reference-count analysis as well as using Static Single Assignment (SSA). This

greatly enhances the capability and accuracy of our bug finding system.

Lastly, our research uses real software systems in our experiments and finds bugs

that are of practical importance. Our experiments are carried out on FFI packages like

the JDK, popular JNI libraries, and the Python libraries in the Fedora LINUX operating

systems. By using these real software systems, we demonstrate the usefulness of our

systems. More importantly, we show our systems are practical. The bugs found by

our systems have either been reported to the respective software bug repositories or

compared and verified with those bugs that have been previously reported.
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CHAPTER 2

EXCEPTION ANALYSIS IN THE JAVA NATIVE INTERFACE

2.1 Introduction

The Java Native Interface (JNI) allows Java programs to interface with low-level

C/C++/assembly code (i.e., native code). A native method is declared in a Java class

by adding the native modifier. For example, the ZipFile class in Fig. 2.1 declares

a native method named open. The actual implementation of the open method is im-

plemented in C. Once declared, native methods are invoked in Java in the same way as

how Java methods are invoked. We define a JNI application as a set of Java class files

together with the native code that implements the native methods declared in the class

files.

Specifically in this chapter, we study the differences of exception-handling mecha-

nisms between Java and native code. Java has two features related to exceptions that

help improve program reliability.

• Compile-time exception checking. A Java compiler enforces that a checked ex-

ception must be declared in a method’s (or constructor’s) throws clause if it

is thrown and not caught by the method (or constructor). While the usefulness of

checked exceptions for large programs is not universally agreed upon by language

designers, proper use of checked exceptions improve program robustness by en-

abling the compiler to identify unhandled exceptional situations during compile

time.

• Runtime exception handling. When an exception is pending in Java code, the Java
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Virtual Machine (JVM) automatically transfers the control to the nearest enclosing

try-catch block that matches the exception type.

Native methods can also throw, handle, and clear Java exceptions through a set of

interface functions provided by the JNI. Consequently, an exception may be pending

when the control is in a native method. For the rest of this chapter, we will use the

term JNI exceptions for those exceptions that are pending on the native side, while using

the term Java exceptions for those pending on the Java side. JNI exceptions are treated

differently from Java exceptions.

• A Java compiler does not perform compile-time exception checking on native

methods, in contrast to how exception checking is performed on Java methods.

• The JVM does not provide runtime exception handling for JNI exceptions. An

exception pending on the native side does not immediately disrupt the native-

code execution, and only after the native code finishes execution will the JVM

mechanism for exceptions start to take over.

Because of these differences, it is easy for JNI programmers to make mistakes. First,

since there is a lack of compile-time exception checking on native methods, the ex-

ceptions declared in a native-method type signature might differ from those exceptions

that can actually happen during runtime. Second, since there is no support for run-

time exception handling in native methods, JNI programmers have to write their own

code for implementing the correct control flow for handling and clearing exceptions—

an error-prone process. Both kinds of mistakes might lead to unexpected crashes in

Java programs and even security vulnerabilities. More detailed discussion and concrete

examples of such mistakes will be presented in Section 2.3.
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The major contribution of this chapter is TurboJet, a complete framework that per-

forms exception analysis on JNI applications. Specifically, TurboJet statically analyzes

and examines JNI code for finding inconsistencies between native-method exception

declarations and implementations. Furthermore, it statically analyzes native-method im-

plementations to check whether exceptions are handled properly. The benefit of static

analysis is that it examines every control-flow path in a program and in general does not

miss mistakes. It is especially appropriate for catching defects in exceptional situations

because they are hard to trigger with normal input and events. Having said that, we note

that the focus of TurboJet is not the creation of new static-analysis algorithms, but rather

the building of a scalable system that performs efficient and accurate analysis over large

Java packages of mixed Java and native code. In this process, TurboJet adapts several

static-analysis algorithms, which are combined to achieve favorable results.

Our experimental results show that TurboJet delivers high accuracy in catching bugs

with relatively low false-positive rates and short execution time. For 16 benchmark

programs with nearly 100K lines of code, TurboJet finds 147 bugs caused by mishan-

dling inconsistent exceptions and 17 bugs of inconsistent exception declarations, with

the false positive rates 23% and 32%, respectively. The total time took to examine all

benchmark programs is only 14 seconds.

The rest of this chapter is structured as follows. We present in Section 2.2 some

background information. In Section 2.3, we discuss in detail the bug patterns studied

in this chapter, followed by an overview of TurboJet in Section 2.4. In Section 2.5,

we present details of TurboJet’s exception-analysis framework. We then discuss how

TurboJet detects bugs of mishandling JNI exceptions in Section 2.6. Prototype imple-

mentation and evaluation are presented in Section 2.7. We have developed an Eclipse

plug-in based on TurboJet; its details are discussed in Section 2.8. We summarize in
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Section 2.9.

2.2 Background: the JNI

The JNI is Java’s foreign function interface that allows Java code to interoperate with

native code. Figs. 2.1 and 2.2 provide two example JNI programs. A Java class declares

a native method using the native keyword. The native method can be implemented

in C code. Once a native method is declared, Java code can invoke the native method in

the same way as how a Java method is invoked.

Java code

class ZipFile {
// Declare a native method;
// no exception declared
private static native long open

(String name, int mode,
long lastModified);

public ZipFile (...) {
// Calling the method
// may crash the program
...; open(...); ...

}

static {System.loadLibrary(”ZipFile”);}
}

C code

void Java ZipFile open (JNIEnv *env, ...) {
...
// An exception is thrown
ThrowIOException(env);
...

}

Figure 2.1: A simple JNI example. This example also demonstrates how a native

method can violate its exception declaration.

Interactions between Java and C can be involved and are made possible through the

use of JNI functions. In general, Java can pass C code a set of Java object references.

21



www.manaraa.com

Java code

class Vulnerable {
//Declare a native method
private native void bcopy(byte[] arr);

public void byteCopy(byte[] arr) {
//Call the native method

bcopy(arr);}
static {

System.loadLibrary(”Vulnerable”);

}
}

C code

//Get a pointer to the Java array,
//then copy the Java array
//to a local buffer
void Java Vulnerable bcopy

(JNIEnv* env, jobject obj, jbyteArray jarr) {
char buffer[512];
//Check for the length of the array

if ((*env)−>GetArrayLength(jarr)>512) {
JNU ThrowArrayIndexOutOfBoundsException(env,0);

}
jbyte *carr =

(*env)−>GetByteArrayElements(jarr,NULL);
//Dangerous operation
strcpy(buffer, carr);
(*env)−>ReleaseByteArrayElements(arr,carr,0);

}

Figure 2.2: An example of mishandling JNI exceptions.

In addition, a JNI environment pointer of type “JNIEnv *” is passed to C. The envi-

ronment pointer contains entries for JNI function pointers, through which C code can

invoke JNI functions. For instance, the C code in Fig. 2.2 invokes GetArrayLength

through the environment pointer to get the length of a Java array. Through these JNI

functions, native methods can read, write, and create Java objects, raise exceptions, in-

voke Java methods, and so on.
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2.2.1 How JNI exceptions can be thrown

Both Java code and native code may throw exceptions. There are several ways that an

exception may become pending on the native side:

• Native code can throw exceptions directly through JNI functions such as Throw

and ThrowNew. We call such throws explicit throws.

• Many JNI functions throw exceptions to indicate failures. For instance,

NewCharArray throws an exception when the allocation fails. Such throws

are considered as implicit throws.

• A native method can call back a Java method through JNI functions such as

CallVoidMethod. The Java method may throw an exception. After the Java

method returns, the exception becomes pending on the native side. We treat this

type of throws also as implicit throws.

Both explicit and implicit throws result in pending exceptions on the native side.

2.2.2 Checked exceptions vs. unchecked exceptions

In Java, there are two kinds of exceptions: checked exceptions and unchecked excep-

tions1. Checked exceptions are used to represent those error conditions that a program

can recover from and are therefore statically checked by Java’s type system. That is, a

checked exception that can escape a Java method (or constructor) has to be a subclass

of the exception classes declared in the method’s (or constructor’s) throws clause.

1Java’s unchecked exceptions include Error, RuntimeException and their subclasses; all other

exception classes are checked exceptions.
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By contrast, unchecked Java exceptions are not statically checked. Following Java’s

practice, TurboJet issues warnings about inconsistent exception declarations only for

checked exceptions. Nevertheless, TurboJet’s exception analysis tracks both checked

and unchecked exceptions (unlike our previous work [50], which tracks only checked

exceptions). The tracking of unchecked exceptions is necessary for finding the second

kind of bugs (i.e., mishandling JNI exceptions).

2.2.3 Interface code vs. library code

Native code associated with a JNI package can roughly be divided into two categories:

interface code and library code. The library code is the code that belongs to a common

native library. The interface code implements Java native methods and glues Java with

C libraries through the JNI. For example, the implementation of the Java classes under

java.util.zip has a thin layer of interface code that links Java with the popular zlib

C library. Typically, the size of interface code is much smaller than the size of library

code; this fact is taken advantage of by TurboJet for better efficiency, as we will show.

It is also worth mentioning that some JNI packages include only interface code. For

example, native code in java.io directly invoke OS system calls for IO operations

and does not go through a native library.

2.3 Defining bug patterns

TurboJet looks for two kinds of mistakes in native methods of JNI applications: incon-

sistent exception declarations and mishandling JNI exceptions. We next give a detailed

24



www.manaraa.com

discussion of these two kinds of mistakes and present concrete examples.

2.3.1 Inconsistent exception declarations

Definition 1 A native method has an inconsistent exception declaration if one exception

that can be thrown from its implementation is not a subclass of the exceptions declared

in the method’s Java signature.

Since a Java compiler does not perform static exception checking on native meth-

ods, this type of bug might lead to unexpected crashes in Java programs. Let us

use the program in Fig. 2.1 as an example. The ZipFile class declares a native

method named open. The Java-side declaration of open does not have any throws

clause, leading programmers and the compiler to think that no checked exceptions

can be thrown. However, the C-code implementation does throw an IOException;

ThrowIOException is a utility function that throws a Java IOException, violat-

ing the declaration. This cannot be detected by a Java compiler. Consequently, when

the ZipFile constructor invokes the native open method, the constructor is not re-

quired to handle the exception or declare it. But in reality a thrown IOException

in open crashes the program, out of the expectation of programmers and the compiler.

This example was actually a real bug in java.util.zip.Zipfile of Sun’s Java

Development Kit (JDK); it was fixed only recently in JDK6U23 (JDK 6 update 23) by

adding a “throws IOException” clause to open.

This type of bug can be difficult to debug when they occur. The JVM will report

a Java stack trace through which programmers can know the exception originates in a

native method. However, since the exception may be thrown due to nested function calls

25



www.manaraa.com

in native code, it is still difficult to locate the source of the exception without knowing

the native call stack. JNI debuggers (e.g., [44, 19]) can help, but not all bugs manifest

themselves during particular program runs.

2.3.2 Mishandling JNI exceptions

As we have discussed, JVM provides no runtime support for exception handling when

a native method is running. A pending JNI exception does not immediately disrupt the

native code execution. Because of the subtle difference between the runtime semantics

of JNI exceptions and Java exceptions, it is easy for JNI programmers to make mistakes.

Fig. 2.2 presents a toy example that shows how mishandling JNI exceptions may

lead to security vulnerabilities. In the example, the Java class Vulnerable de-

clares a native method, which is realized by a C function. The C code checks for

some condition (a bounds check in this case), and when the check fails, a JNI excep-

tion is thrown. The function JNU ThrowArrayIndexOutOfBoundsException

is a JNI utility function. It first uses FindClass to get a reference to class

ArrayIndexOutOfBoundsException and then uses ThrowNew to throw the ex-

ception. It appears that the following strcpy is safe as it is after the bounds check.

However, since the JNI exception does not disrupt the control flow, the strcpy will

always be executed and may result in an unbounded string copy. Consequently, an at-

tacker can craft malicious input to the public Java byteCopy() method, and overtake

the JVM.

The error in Fig. 2.2 can be fixed quite easily—just insert a return statement after the

exception-throwing statement. In general, when a JNI exception is pending, native code
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should do one of the following two things:

• Perform some clean-up work (e.g., freeing buffers) and return the control to the

Java side. Then the exception-handling mechanism of the JVM takes over.

• Handle and clear the exception on the native side using certain JNI func-

tions. For example, ExceptionClear clears the pending exception;

ExceptionDescribe prints information associated with the pending excep-

tion; ExceptionOccurred checks if an exception is pending.

In short, JNI programmers are required to implement the control flow of exception

handling correctly. This is a tedious and error-prone process, especially when function

calls are involved. For example, imagine a C function, say f, invokes another C function,

say g, and the function g throws an exception when an error occurs. The f function has

to explicitly deal with two cases after calling g: the successful case, and the exceptional

case. Mishandling it may result in the same type of errors as the one in the example. An

empirical study has identified 35 cases of mishandling JNI exceptions in 38,000 lines of

C code [86].

The error pattern of mishandling exceptions is not unique to the JNI. Any program-

ming language with managed environments that allows native components to throw ex-

ceptions faces the same issue. Examples include the Python/C API interface [72] and

the OCaml/C interface [47].

Furthermore, mishandling Java exceptions in JNI-based C code is a special case

of mishandling errors in C. Since the C language does not provide language support

for exceptions, C functions often use integer return codes to report errors to callers.
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Callers must use these return values to check for error conditions and perform appropri-

ate actions such as handling errors or propagating errors to their callers. This process is

tedious and can be many programming mistakes, as reported by a study on how errors

are handled in an embedded software system [11]. Previous systems [75, 11] used static

analysis to automatically detect error-handling errors in C code. These systems rely

on manual patterns to determine where errors are generated, propagated, and handled.

In the JNI context, where Java exceptions are generated, propagated, and handled can

be identified automatically based on relevant JNI-function invocations; this makes our

problem more tractable.

Defining the pattern of mishandling JNI exceptions. When a JNI exception is pend-

ing, native code should either return to the Java side after performing some clean-up

tasks, or handle and clear the exception itself. Intuitively, there is a set of “safe”

operations that are allowed when an exception is pending. For example, a return-to-

Java operation is safe, so are calling JNI functions such as ExceptionOccurred or

ExceptionClear. Given this intuition, we next define the defect pattern of mishan-

dling JNI exceptions:

Definition 2 JNI-based native code has a defect of mishandling JNI exceptions if there

is a location in the code that can be reached during runtime with a state such that

1. a JNI exception is pending,

2. and the next operation is an unsafe operation.

By this definition, the example in Fig. 2.2 has a defect because it is possible to

reach the location before strcpy with a pending exception, and strcpy is in general

unsafe.
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(a)

int len=(*env)−>GetArrayLength(arr);
int *p=(*env)−>GetIntArrayElements(arr,NULL);

for (i=0; i<len; i++) {
sum += p[i];

}

(b)

jcharArray elemArr=(*env)−>NewCharArray(len);
(*env)−>SetCharArrayRegion(elemArr,0,len,chars);

Figure 2.3: Two more examples of mishandling JNI exceptions.

We make a few clarifications about the definition. First, a JNI exception can be

either a checked or an unchecked exception. Second, it leaves open the notion of “un-

safe operations”. Our strategy of determining unsafe operations will be described in

Section 2.6.1. Finally, readers may wonder whether it is wise to look for defects of mis-

handling JNI exceptions in the first place. After all, one could argue that the example in

Fig. 2.2 is a case of buffer overflows and a bug finder targeting buffer overflows would

suffice. This is indeed true for that example. However, we would argue that there are

many other scenarios that do not involve buffer overflows, but are similar to the example

in terms of incorrect control flow following JNI exceptions. We give two examples in

Fig. 2.3.

In Fig. 2.3(a), GetIntArrayElements may throw an exception and return

NULL when it fails to get a pointer to an input Java integer array. In this case, the

subsequent array access in p[i] results in a null-pointer dereference.

In Fig. 2.3(b), NewCharArray may throw an exception when allocation fails. The

JNI reference manual states that “it is extremely important to check, handle, and clear

a pending exception before calling any subsequent JNI functions. Calling most JNI

functions with a pending exception—with an exception that you have not explicitly
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cleared—may lead to unexpected results.” Therefore, it is unsafe to invoke the next

JNI function SetCharArrayRegion in the example.

These examples demonstrate that mishandling JNI exceptions may result in a vari-

ety of runtime failures. Rather than constructing a set of bug finders targeting each of

these failures, it is beneficial to have a single framework targeting the general pattern of

mishandling JNI exceptions.

2.4 Overview of TurboJet

Fig. 2.4 presents a high-level diagram that depicts the system flow of TurboJet. At a

high-level, TurboJet takes a JNI application as input and generates warnings for na-

tive methods in terms of inconsistent exception declarations and mishandling JNI ex-

ceptions. A JNI application is composed of both Java class files and native code that

implements the native methods declared in the class files. The application is fed into

an exception-analysis component, which performs static analysis to determine possible

pending JNI exceptions at each program point. We use the term exception effects to refer

to the set of exceptions that may escape a method. The exception-effect information is

then used by two warning generators that search for bugs of (1) inconsistent exception

declarations, and (2) mishandling JNI exceptions.

The exception-analysis component is designed to be both efficient and precise.

These goals are achieved by a two-stage analysis: the first stage is a coarse-grained

analysis, which quickly prunes a large chunk of irrelevant code; the second stage per-

forms fine-grained analysis that employs both path sensitivity and context sensitivity

to perform precise exception analysis on the remaining code. Details of the exception-
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Figure 2.4: System architecture of TurboJet.

analysis component is discussed in Section 2.5.

The warning generator for inconsistent exception declarations is straightforward and

directly use the information generated by exception analysis. The exception analysis de-

termines possible pending JNI exceptions at every program point. The possible pending

checked exceptions at the end of a native method is considered the actual exception

effects of the native method. The actual exception effects are then compared with the

declared exception effects extracted from Java class files. If there is a mismatch, the

warning generator issues a warning. In particular, if a checked exception can possibly

be pending at the end of a native method and if the class of the exception is not a subclass

of one of the exception classes listed in the native method’s signature, then a warning is

issued.

The warning generator for mishandling JNI exceptions also uses the information

from exception analysis and includes two additional components: (1) a static analysis

for identifying unsafe operations; (2) a “warning recovery” mechanism that attempts

to generate just one warning message for each distinct bug. Section 2.6 presents the

technical details of the warning generator for mishandling JNI exceptions.
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2.5 Scalable and precise exception analysis

The major stages in TurboJet’s exception analysis is depicted in Fig. 2.4. As mentioned

before, the goal of exception analysis is to find out the set of possible pending JNI

exceptions at every program point of native methods. Its core is a two-stage design,

motivated by the following two observations.

1. Library code in a JNI package does not affect Java’s exception state. As discussed

in the background section, native code in a JNI package consists of interface and

library code. Intuitively, a general-purpose library such as the zlib C library works

independently of Java. Only interface code, which bridges between Java and the

library, inspects and changes Java’s state via JNI functions. In particular, only

interface code will throw, clear, or handle JNI exceptions.

2. Accurately computing exception effects of native methods requires fine-grained

static analysis. The need for this will be explained in more detail. But at a high

level, the analysis needs path sensitivity since JNI code frequently correlates its

exception state with other parts of the execution state; it needs context sensitivity

because JNI code often invokes utility functions that groups several JNI function

calls.

TurboJet’s exception analysis uses a two-stage design to take advantage of these

observations. The first stage is a coarse-grained analysis that aims to separate interface

code from library code automatically. It is conservative and quickly throws away code

that is irrelevant for calculating exception effects. Afterward, the second stage can focus

on the remaining smaller set of interface code. The second stage is much slower as it

needs the full set of sensitivity (path and context sensitivity) for accurate analysis. This
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stage takes into considerations of JNI function calls and performs exception-effect look-

ups in Java class files since native code can call back Java methods, which may throw

exceptions. The second stage is at the heart of TurboJet’s exception analysis.

2.5.1 Separating interface and library code

The first stage of TurboJet’s exception analysis is a crude, flow-insensitive analysis with

the goal of separating interface and library code. This analysis is helped by JNI’s design

philosophy that interaction with the JVM in native code is through a set of well-defined

JNI interface functions.2 In particular, native code interacts with Java through the JNI

functions accessible from a global JNI environment pointer passed from Java. This

design makes identification of interface code straightforward.

Accordingly, a native function is defined as part of the interface code if

1. it invokes a JNI function through the environment pointer, or

2. it invokes another native function that is part of the interface code.

If a native function does not belong to the interface code (by the above definition),

then its execution will not have any effect on the JVM’s exception state. We have im-

plemented a straightforward worklist algorithm that iterates through all functions and

identifies invocations of JNI functions via the JNI environment pointer. The algorithm

is used to calculate the set of interface code.

2There are exceptions; for instance, native code can have a direct native pointer to a Java primitive-

type array and read/rewrite the array elements through the pointer. Nevertheless, JVM’s exception state

(the focus of this chapter) can be changed only by JNI functions for a well-defined native method.
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We note that the above definition of interface code covers the case of calling back

a Java method since a Java call back is achieved through invoking a JNI function such

as CallVoidMethod. This implies that any native function that performs a Java call

back is part of the interface code. Calling-back-into-Java is rare in some JNI packages,

but can be common in others. For instance, the sun.awt JNI package of JDK6 has

almost one hundred call-back functions.

Having the first-stage exception analysis helps TurboJet achieve high efficiency, as

our experiments demonstrate (see Section 2.7). Briefly, without the first-stage analysis,

TurboJet’s analysis time would be increased by more than an order of magnitude on the

set of JNI programs we studied. Another option that could avoid the first-stage analysis

is to manually separate interface and library code. Manual separation is straightforward

to perform in practice as a JNI application is usually organized in a way that its library

code is in a separate directory. Nevertheless, it has two downsides. First, the manual

process may make mistakes and code that does affect Java’s state would be wrongly

removed. Second, since manual classification most likely uses a file as the unit, it would

include irrelevant functions into interface code when they are in files that mix relevant

and irrelevant functions. Our first-stage analysis uses functions as the classification unit

and provides automatic classification.

2.5.2 Fine-grained tracking of exception states

The second stage of exception analysis is a fine-grained analysis that is path-sensitive

and context-sensitive. By applying the fine-grained analysis on the remaining interface

code, TurboJet can precisely identify the exception effects at every program point.
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(a)

int *p = (*env)−>GetIntArrayElements(arr, NULL);
if (p == NULL) /*exception thrown*/

return;
for (i=0; i<10; i++) sum += p[i];

(b)

void ThrowByName(JNIEnv *env, const char* cn){
jclass cls = (*env)−>FindClass(cn);

if(cls != NULL){
(*env)−>ThrowNew(cls);

}
}

Figure 2.5: Examples for illustrating the need for path and context sensitivity.

Before presenting our solution, we first discuss requirements of performing accurate

tracking.

Requirements of TurboJet’s exception analysis

The first requirement is that the analysis needs path sensitivity because JNI programs of-

ten exploit correlation between exception states and other execution states. For instance,

many JNI functions return an error value and at the same time throw an exception to sig-

nal failures (similar situation occurs in the Python/C API). As a result of this correlation

between the exception state and the return value, JNI programs can either invoke JNI

functions such as ExceptionOccured or check the return value to decide on the

exception state. Checking the return value is the preferred way as it is more efficient.

Fig. 2.5(a) presents such an example involving GetIntArrayElements, which re-

turns the null value and throws an exception when it fails.

Invoking GetIntArrayElements results in two possible cases: an exception is

thrown and p equals NULL; no exception is thrown and p gets a non-null value. That

is, the value of p is correlated with the exception state. To infer correctly that the state
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before the loop is always a no-exception state, a static analysis has to be path sensitive,

taking the branch condition into account.

The second requirement is that the analysis also needs context sensitivity because

JNI programs often use utility functions to group several JNI function calls. JNI pro-

gramming is tedious; a single operation on the Java side usually involves several steps

in native code. For instance, the function in Fig. 2.5(b) uses a two-step process for

throwing an exception: first obtaining a reference to the class of the exception and then

throwing the exception using the reference. For convenience, JNI programmers often

use these kinds of utility functions to simplify programming. What exception is pend-

ing after an invocation of the function in Fig. 2.5(b) depends on what the context passes

in as the argument.

Clearly, it is not possible for TurboJet to infer in every case the exact exception

effects. For instance, suppose a JNI program calls back a Java method and TurboJet

cannot determine which Java method it is. In such cases, TurboJet has to be conservative

and assumes any kind of exceptions can be thrown. In the analysis, this is encoded by

specifying the exception state afterwards becomes java.lang.Exception, the root

class of all checked exceptions.

2.5.3 An FSM specification of exception-state transitions

TurboJet uses an FSM (Finite State Machine) to track how exception states can be

changed by JNI functions. For instance, an exception becomes pending after Throw;

after ExceptionClear, the current pending exception is cleared. Fig. 2.6 presents an

FSM specification. It is incomplete as only a few JNI functions are included for brevity.
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Figure 2.6: An incomplete FSM specification of exception-state transitions.

The following table summarizes the meaning of the states in the FSM:

NoExn No JNI exception is pending

ChkedExn Ei A checked exception Ei is pend-

ing

UnChkedExn UE j An unchecked exception UE j is

pending

The FSM has a state for each specific type of exceptions, including both checked

and unchecked exceptions.

2.5.4 Path-sensitive analysis

Static-analysis algorithms that capture full path sensitivity (e.g., [73]) are rather slow

since they track all execution states. Fortunately, we are interested only in exception

states and transitions between exception states are described by an FSM. TurboJet adopts

ESP, proposed by Das et al. [17]. It is well-suited for capturing partial path sensitivity.

Given a safety property specified by an FSM, ESP symbolically evaluates the pro-

gram being analyzed, tracks and updates symbolic states. A symbolic state consists

of a property state and an execution state. A property state is a state in the FSM. An
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execution state models the rest of the program’s state and can be configured with dif-

ferent precision. The framework provides a conservative, scalable, and precise analysis

to verify program safety properties. Readers may refer to the ESP paper for more de-

tailed description. In the end, ESP infers information of the following format at each

control-flow edge:

{ 〈ps1, es1〉, . . . , 〈psn, esn〉 }

It contains n symbolic states and each symbolic state has its own property state (ps)

and execution state (es). Intuitively, it means that there are n possible cases when the

program’s control is at the control-flow edge. In the i-th case, the property state is ps i

and the execution state is es i.

In the context of exception analysis, TurboJet uses the FSM specified in Fig. 2.6.

That is, a property state is an exception state. For the execution state, TurboJet tracks

two kinds of information: (1) constant values of variables of simple types; and (2) Java-

side information of variables that hold Java references. We next explain how these two

kinds of information are tracked.

Tracking constant values. For variables of simple types, TurboJet tracks their constant

values using an interprocedural and conditional constant propagation [88]. In particu-

lar, it tracks integer constants and string constants. String constants are tracked since

JNI programs often use them for finding a class, finding a method ID, and for other

operations.

Take the program in Fig. 2.5(a) as an example. After GetIntArrayElements,
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t : : = jobjn(sc) | jclsn(sc) | jthwn(sc)
| jmidn(sc, sm, st) | jfidn(sc, sf , st)

s : : = “Str” | ⊤
n : : = 0 | 1 | ∗

Figure 2.7: Syntax of Java types that TurboJet tracks.

there are two symbolic states encoded as follows.

{〈NoExn, { p = ⊤}〉,

〈UnChkedExn OutOfMemoryError, { p = 0 }〉}

There are two cases. In the first case, there are no exception pending and p is not a

constant. In the second case, there is an unchecked exception OutOfMemoryError

pending, and p = 0. This information correlates the exception state with the value of p

and enables the analysis to take advantage of the following if-branch to infer that before

the loop it must be the case that no exception is pending.

Following the standard constant propagation, we use ⊥ for uninitialized variables

and ⊤ for non-constants.

Tracking Java types of C variables. JNI programs hold references to Java-side objects

and use references to manipulate the Java state. These references are of special types in

the native side. For example, a reference of type jobject holds a reference to a Java

object; a reference of type jmethodID holds a reference to a Java method ID.

To accurately track exception states, it is necessary to infer more Java-side infor-

mation about these references. For instance, since the JNI function Throw takes a

jthrowable reference, TurboJet has to know the class of the Java object to infer the

39



www.manaraa.com

exact exception class it throws. TurboJet uses a simple type system to capture this kind

of information. The type system is presented in Fig. 2.7. The following table summa-

rizes the meaning of each kind of types.

jobjn(sc) A reference to a Java object whose

class is sc

jclsn(sc) A reference to a Java class object

with the class being sc

jthwn(sc) A reference to a Java Throwable

object whose class is sc

jmidn(sc, sm, st) A reference to a Java method ID in

class sc with name sm and type st

jfidn(sc, sf , st) A reference to a Java field ID in

class sc with name sf and type st

Each s represents either a constant string, or an unknown value (represented by ⊤).

When n is 0, it means the reference is a null value; when n is 1, it is non-null; when n

is ∗, it can be either null or non-null.

As an example, the following syntax denotes a non-null Java method ID in class

“Demo” with name “callback” and type “()V”. The type means that the function takes

zero arguments and returns the void type.

jmid1(“Demo”, “callback”, “()V”)

Fig. 2.8 presents a more elaborate example demonstrating how path sensitivity works

in TurboJet. The JNI program invokes a callback method in class Demo. We assume
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that the callback method throws a checked exception IOException, abbreviated as

IOExn in the figure. Before invoking a Java method, there is a series of preparation

steps in the program: (1) finding a reference to the class Demo; (2) allocating an object;

(3) obtaining the method ID of the callback function. Since each step may throw an

exception, proper checking of null return values after each call is inserted in the code.

For each control-flow edge, Fig. 2.8 contains annotation that specifies what Turbo-

Jet’s exception analysis infers. Notice that after FindClass, there are two symbolic

states representing two cases. The following if-statement checks the return value and as

a result the number of symbolic states is reduced to one on both branches.

After CallVoidMethod, the only exception state is “ChkedExn IOException”.

TurboJet can infer this accurately because it knows exactly which Java method the code

is calling, thanks to the information associated with mid before the call. Since TurboJet

also takes Java class files as input, it uses the method ID to perform a method look-up

in class files and extracts its type signature. The type signature tells what exceptions

are declared in the method’s throws clause. In this case, it is assumed to declare an

IOException.

2.5.5 Context-sensitive analysis

ESP-style path-sensitivity works well on a single function. However, the context of its

interprocedural version is based on the property state alone [17] and is not sufficient

for JNI programs. The need for more fine-grained contexts is because of a common

programming pattern in JNI programs: for convenience, JNI programs typically use

a set of utility functions for accessing fields and throwing exceptions. These utility
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Figure 2.8: Example of TurboJet path sensitivity.
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Figure 2.9: Exception analysis using ESP.

functions take names of fields, methods, classes, or exceptions as parameters and are

called multiple times with different names. To accurately track Java types in native

code, our system has to take the context into account.

Figs. 2.9 and 2.10 present a typical JNI program for demonstrating the need. In the

example, ThrowByName is a utility function, which takes the name of an exception as

a parameter and uses a sequence of JNI functions to throw the exception. The function

is used by the Java Demo main function in two contexts, denoted by L1 and L2. At
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Figure 2.10: Exception analysis using TurboJet.

L1, exception E1 is thrown and exceptions E2 at L2.

ESP as shown in Fig. 2.9 merges the execution states of the two call sites when

analyzing ThrowByName since their property states are the same; both are in the

NoExn state. As a result, the value of parameter cn in ThrowByName gets ⊤. Conse-

quently, the analysis determines that ThrowByName has the “ChkedExn Exception”

effect. But in reality, E1 can only be thrown at L1, and E2 at L2. Some

unchecked exception may be thrown as well. For brevity, the figure includes only

44



www.manaraa.com

“NoClassDefFoundError”.

TurboJet as shown in Fig. 2.10 improves the context by using the call-string ap-

proach (of length one) [78]. The context now becomes (nc, ps), where nc is the caller

node and ps the property state. As a result, the format of information at a control-flow

edge becomes

(nc, ps) : { 〈ps1, es1〉, . . . , 〈psn, esn〉 }

It represents the set of symbolic states when the context is (nc, ps).

With the added contextual information, TurboJet is able to infer the exception effects

accurately for the program in Fig. 2.9. In the figure, we use “ m” to represent a special

(unknown) context that invokes the Java Demo main function. Another note about

the figure is that the “NoClassDefFoundError” unchecked exception disappears

because for each context the analysis determines the exact name of the exception and

our system is able to infer FindClass always succeeds for a specific name.

The overall interprocedural algorithm is given in the appendix, using notation similar

to the ESP paper. The complexity of this algorithm is Calls × |D|2 × E × V 2, where

Calls is the number of call sites in the program, |D| is the number of exception states,

E is the number of control-flow edges in the control-flow graph, and V is the number of

variables in the program. The time complexity is more than that of ESP, but still remains

polynomial.
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2.5.6 Transfer functions for JNI functions

Invoking a JNI function updates the symbolic state. The effects on the symbolic state

are defined by a set of transfer functions. These transfer functions are defined according

to their specification in the JNI manual [51].

2.5.7 Merging symbolic states

At a merge point of a control flow graph, TurboJet groups symbolic states in the follow-

ing fashion. It merges two symbolic states if the exception state of the first is a subclass

of the exception state of the second. Since the subclass relation is reflexive, Turbo-

Jet’s merge function extends ESP’s, which merges two symbolic states if their exception

states are the same. Grouping symbolic states by using a parent class of the exceptions

is conservative. This may introduce imprecision. The advantage is that by having less

symbolic states, the analysis runs faster.

2.6 Finding bugs of mishandling JNI exceptions

In this section, we discuss how TurboJet utilizes the information generated by exception

analysis to find bugs of mishandling JNI exceptions. By definition 2 (on page 28), two

conditions should be met for such kind of bugs: (1) a JNI exception is pending; and (2)

the next operation is an unsafe operation. The first condition is determined by the result

from exception analysis.

Fig. 2.11 presents pseudo code that highlights the major steps of warning generation
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Input: Program P
Output: A list of warning locations in P
Notation:

1. op(l) stands for the opera-
tion at location l in P

2. ss◦(l) stands for the sym-
bolic state at the entry of
node for l

BEGIN: ss◦ = exceptionAnalysis(P );
for each location l in P do

if (〈ps , es〉 ∈ ss◦(l)) and (ps 6= NoExn) and (unSafe(op(l))) then
Issue a warning for location l;
P=warningRecovery(P );
goto BEGIN

end if
end for

Figure 2.11: High-level steps of warning generation for mishandling JNI excep-

tions.

for mishandling JNI exceptions. First, it performs exception analysis on an input pro-

gram. We use notation ss◦ to stand for the result of exception analysis. It is a function

mapping locations of P to the symbolic states calculated by exception analysis. In par-

ticular, ss◦(l) is the symbolic state at the entry of location l. It is calculated as the join

of symbolic states of all edges that flow into the node for l in the control-flow graph.

After exception analysis, a warning is issued for a location if the exception analysis

indicates a possible pending exception and next to that location an unsafe operation

is identified. Finally, after a warning is issued, it performs “warning recovery” which

transforms the old program and re-computes exception analysis. We next discuss how

TurboJet decides whether an operation is unsafe and how it performs warning recovery.
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2.6.1 Determining unsafe operations

Our strategy for determining unsafe operations is an algorithm of whitelisting plus static

taint analysis.

Whitelisting

The whitelist is comprised of those operations that are absolutely safe to use when an

exception is pending. In general, after an exception is thrown, a JNI program either

(1) cleans up resources and returns the control to Java, or (2) handles and clears the

exception itself using JNI functions such as ExceptionClear. A lists the set of

operations that are on the whitelist.

Static taint analysis

A pure whitelist strategy, however, would result in too many false positives (see the ex-

periments section). As an example, the following code is considered safe, but a warning

would be issued by the whitelisting strategy since “a=a+1” is not on the whitelist.

int *p = (*env)−>GetIntArrayElements(arr,NULL);

if ((*env)−>ExceptionOccurred()) {

a=a+1; return a;}

We cannot put plus and assignment operations on the whitelist because that would

allow statements like “a=(*p)+1” to escape detection.

Our idea is to use static taint analysis to decide the safety of operations that are not

on the whitelist. In static taint analysis, a taint source specifies where taint is generated.
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A taint sink specifies unsafe ways in which data may be used in the program. A taint

propagation rule specifies how taint is propagated in the program.

Our system uses taint sources to model where faults may happen and use static anal-

ysis to track fault propagation. In general, a fault is an accidental condition that can

cause a program to malfunction. One benefit of static taint analysis is that it can ac-

commodate various sources of faults. For example, in an application that can receive

network packets that are controllable by remote attackers, all network packets can be

considered being tainted because their contents may be arbitrary values. In the JNI con-

text, data passed from Java to C can be considered being tainted because attackers can

write a Java program and affect those data, as the example in Fig. 2.2 shows. Our frame-

work is flexible about how taint is generated and propagated and can thus accommodate

various fault models.

In our implementation, our fault model is comprised of the following parts:

• Certain JNI functions may fail to return desired results and are sources of faults.

For instance, NewIntArray may fail to allocate a Java integer array.

• Certain JNI functions may return direct pointers to Java arrays or strings that can

be controlled by attackers. For example, GetIntArrayElements may return

a direct pointer to a Java integer array when successful. Therefore, the fault model

also considers the results of these functions as sources of faults.

• Some library function calls may fail. For example, malloc may fail to allocate

a buffer. In general, for those external functions that may generate faults, our

system requires manual annotation to specify they are fault sources.
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All faults in our fault model are associated with pointers. Intuitively, a tainted pointer

means that it points to data that may be affected by faults specified in the fault model.

For example, the pointer result of GetIntArrayElements is tainted because its

value may be null or a pointer to a Java buffer (controlled by attackers). Given this

intuition, a taint sink (i.e., unsafe ways of using taint) in our setting is an operation

where a tainted pointer value is dereferenced for either memory reading or memory

writing. Note that the operation of copying a tainted pointer variable to another pointer

variable does not constitute a taint sink, as there are no dereferences. On the other hand,

the second variable also becomes tainted because of the copy and a dereference of it

would be unsafe.

An operation is unsafe if it is not on the whitelist and it may dereference tainted

pointers. Now come back to the example earlier in this section. p is marked as being

tainted as it is the result of GetIntArrayElements. As a result, the operation

“a=a+1” is considered safe because it does not involve the use of any tainted data. On

the other hand, “a=(*p)+1” would be unsafe. Note that finding an unsafe operation is

not a sufficient condition for issuing a warning. By the algorithm in Fig. 2.11, a warning

is issued only when performing an unsafe operation with a pending exception.

To track taint propagation statically, we have implemented an interprocedural, flow-

insensitive algorithm. The flow-insensitivity makes our static taint analysis scalable.

The algorithm consists of two steps:

1. A pointer graph is constructed for the whole program. For every pointer in the

program, there is a node in the graph to represent the value of the pointer. The

edges in the graph approximate how pointer values flow in the program. Our

pointer graph is similar to CCured’s pointer graph [66], except that our graph has
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different kinds of edges, which will be discussed shortly.

2. Nodes in the graph that correspond to taint sources are marked as being tainted,

and then our algorithm propagates taint along edges of the graph. After this pro-

cess, any marked nodes are considered being tainted.

Next we discuss more details of our pointer graph. For every pointer in the program,

we have a node in the graph to represent the value of the pointer. For example, if a

program has a declaration

int *p;

then its pointer graph has a node for the address of p, or &p, and another node for p.

This is because both p and &p are pointers. Similarly, if the program has

int **q;

then the graph has a node for the address of q, a node for q, and a node for *q; all three

are pointer values.

There are two kinds of edges in the graph. The first kind is flow-to edges. A directed

flow-to edge from node one to node two exists if the pointer value of node one may

directly flow to the pointer value for node two. For example, an assignment from pointer

one to pointer two would result in a flow-to edge.

The second kind of edges is contains edges. It allows our pointer graph to be sound

in the presence of aliases. A contains edge exists from node one to node two if the

storage place pointed to by the pointer for node one may contain the pointer for node

two. For example, given the declaration “int *p”, there is a contains edge from the
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node for &p to the node for p. In this example, a contains edge is like a points-to edge

in alias analysis. Contains edges allow us to handle C structs. A pointer to a C struct

contains all the pointers inside the struct.

Fig. 2.12 presents an example program and its pointer graph. Dotted edges are con-

tains edges; solid edges are flow-to edges. The node “ret(GIAE)” represents the

pointer value returned by GetIntArrayElements. The flow-to edge from this node

to the node for “p” exists because of the assignment on line 3. The flow-to edge from

&p to q is because of the assignment on line 2.

Our algorithm also propagates flow-to edges along contains edges. This is because

when a pointer value flows to another pointer value, the storage places pointed to by

these two values may be aliases. As a result, implicit flows exist between the aliases.

An example of the propagation of flow-to edges along contains edges in Fig. 2.12 is the

propagation of the flow-to edge from &p to q along the contains edges that are from &p

to p and from q to *q. As a result, the flow-to edges from p to *q and from *q to p are

added.

Having constructed the pointer graph, it is easy to compute what pointer values in the

example program may be tainted. First, our fault model specifies that the return value of

GetIntArrayElements may be tainted. This taint is then propagated in the pointer

graph along flow-to edges, which in turn taints the nodes for p and *q. Given this result,

operations on line 6 and 7 are unsafe as they dereference tainted pointer “*q”.

For external library functions without source code, the algorithm accepts hand anno-

tations about taint propagation as their models. A library function without annotation is

assumed to have the default taint propagation rule: the output is tainted if and only if any

of its arguments is tainted. The default rule can be overwritten with hand annotations.
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1 int *p;
2 int **q = &p;
3 p = (*env)−>GetIntArrayElements(arr,NULL);
4 int len = (*env)−>GetArrayLength(arr);

5 for (i=0; i<len; i++) {
6 if ((*q)[i]>0) {
7 sum += (*q)[i];}
8 }

Figure 2.12: An example program and its pointer graph. The program takes a

Java integer array and computes the sum of all positive elements.

The nodes with shading are tainted nodes.

We use CIL’s attribute language for such manual annotation. For instance, an annotation

can say that the output is always tainted and independent of the arguments; in this case,

the function is a taint source. A different annotation might say that whether the output

is tainted depends on a specific argument.

Calling any external functions that take tainted pointers as parameters is considered

unsafe—they might dereference those pointers. This is a source of inaccuracy in our

analysis. We could enhance the precision by allowing hand annotation describing how

parameters are used in external functions; this is left as future work. We treat JNI

functions as external library functions. Therefore, if a JNI function is not on the white

list, an invocation of the JNI function is considered unsafe if it takes tainted pointers as

parameters.

Our algorithm for constructing pointer graphs handles most C features, including

function calls and returns, structs, unions, and others. One limitation of the pointer-
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graph construction at this point is it does not construct flow-to edges for inlined assem-

blies.

2.6.2 Warning recovery

The purpose of warning recovery is to suppress duplicate warnings. To illustrate its ne-

cessity, we use the example in Fig. 2.12. At both lines 6 and 7, an exception thrown

by GetIntArrayElements may be pending and operations at these two places are

unsafe since they dereference the tainted pointer “*q”. A naı̈ve system would issue

warnings for both lines 6 and 7. However, both warnings are due to the error of mis-

handling JNI exceptions possibly thrown at line 3, and can be considered duplicates.

Ideally, only one warning should be issued.

To suppress this kind of duplicates, we have implemented a warning-recovery strat-

egy. First, our system remembers information about which exceptions can reach which

location. For line 6 of the example problem, the exception raised at line 3 can reach line

6. Our system records location information by augmenting exception states. In partic-

ular, ChkedExn E becomes “ChkedExn E from { l1, ..., ln }”. If the exception state at a

location l is “ChkedExn E from { l1, ..., ln }”, it means that exception E thrown at l1 to

ln might reach l. We augment “UnChkedExn E” similarly.

Next, after a warning is issued, our system inserts an ExceptionClear statement

immediately after all locations included in the abstract state. For example, after a warn-

ing for line 6 is issued, an ExceptionClear statement is inserted after line 3, whose

exception reaches line 6.

After inserting the ExceptionClear statements, our system re-computes excep-
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tion analysis and continues issuing warnings. Because of the inserted statements, dupli-

cate warnings due to the same exception source are suppressed. This strategy allows us

to suppress the warning at line 7.

Note that our system inserts ExceptionClear purely for warning recovery, not

for transforming the program into a correct or semantically equivalent one.

2.7 Prototype implementations and evaluation

JNI Package LOC Inconsistent exception declarations

(K) Warnings True Bugs FP(%)

java.io 2 3 1 67
java.lang.math 11 0 0 0
java.lang.non-math 3 1 1 0
java.net 10 4 0 100
java.nio 0.4 1 1 0
java.security 0.01 0 0 0
java.sql 0.02 0 0 0
java.util.timezone 0.7 0 0 0
java.util.zip 14 2 2 0
java.util.other3 0.02 0 0 0
java-gnome 6 5 3 40
jogl 0.6 2 2 0
libec 19 1 1 0
libreadline 2 2 2 0
posix 2 1 1 0
spread 28 3 3 0

TOTAL 99 25 17 32

Table 2.1: Accuracy evaluation of TurboJet on finding inconsistent exception dec-

larations.

To evaluate TurboJet, we conducted experiments to evaluate its accuracy, effective-

ness and efficiency. Our static analysis is implemented in the CIL framework [65], a tool

set for analyzing and transforming C programs. Before our analysis is invoked, the CIL
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JNI Package LOC Mishandling JNI exceptions

(K) Warnings True Bugs FP(%)

java.io 2 0 0 0
java.lang.math 11 0 0 0
java.lang.non-math 3 8 5 38
java.net 10 88 60 32
java.nio 0.4 8 8 0
java.security 0.01 0 0 0
java.sql 0.02 0 0 0
java.util.timezone 0.7 0 0 0
java.util.zip 14 24 20 17
java.util.other 0.02 0 0 0
java-gnome 6 17 13 24
jogl 0.6 5 5 0
libec 19 0 0 0
libreadline 2 0 0 0
posix 2 40 36 10
spread 28 0 0 0

TOTAL 99 190 147 23

Table 2.2: Accuracy evaluation of TurboJet for finding inconsistent exception dec-

larations.

front end converts C to the CIL intermediate language. The conversion compiles away

many complexities of C, thus allowing our system to concentrate on a relatively clean

subset of C. CIL’s parser does not support C++ programs, so our analysis is limited to

C programs only. There are also a few limitations in CIL’s parser, and we had to tweak

a few programs’ syntax so they are acceptable to CIL’s parser. Our system has a total

about 6,600 lines of OCaml code, including 2,000 lines for constructing pointer graphs.

In the exception analysis, we used a may-alias analysis module and a call-graph module

included in the CIL. Our system also used JavaLib [35] to access information from Java

class files. All experiments were carried out on a Linux Ubuntu 9.10 box with Intel

Core2 Duo CPU at 3.16GHz and with 512MB memory.

We compiled a set of JNI packages for experimentation. The packages and their
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numbers of lines of C source code are listed in Tables 2.1 and 2.2. Statistics for

Java class files are not included because TurboJet needs only Java type signatures for

its analysis. The packages with names starting with java are extracted from Sun’s

JDK6U03 (release 6 update 3). These packages cover all native code in Sun’s JDK

under the share and solaris directories. Other packages are also selected as they

are well-known Java applications that consist of JNI code and native components. Brief

descriptions of these benchmark programs are shown in Table 1.1.

The experiments were designed to answer the following set of questions:

1. How accurate is TurboJet at uncovering errors of inconsistent exception declara-

tions and mishandling JNI exceptions? Does it generate too many false positives

along the process?

2. How efficient is TurboJet in terms of analysis time? Does it scale to large pro-

grams?

3. Is the two-stage exception analysis necessary?

2.7.1 Accuracy

Tables 2.1 and 2.2 present the number of warnings and true bugs of both types of bugs

in the set of benchmark programs.

Results on inconsistent exception declarations

Conceptually, there are two categories of bugs. The first category contains those bugs

when a native method does not declare any exceptions but its implementation can ac-
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tually throw some exceptions. The second category contains those bugs when a native

method declares some exceptions but the implementation can actually throw a checked

exception that is not a subclass of any of the declared exceptions. All the bugs we

identified in the benchmark programs belong to the first category. For example, in

the libec package, the implementation of native method generateECKeyPair

throws java.security.KeyException. However, the method’s Java signature

does not declare any exception. A similar bug is found in the java.nio package of

Sun’s JDK, where native method force0 throws java.io.IOException but the

method’s Java-side signature does not declare any exception. We manually checked

against JDK6U23, a new version of the JDK, for the bugs identified in JDK6U03 and

found that one bug in ZipFile has been fixed in JDK6U23. But other bugs in the JDK

remain.

False positives. There are 8 false positives. All false positives are caused by the im-

precision when tracking the execution state. Fig. 2.13 presents a typical example. A

string constant that represents the name of a Java exception class is stored in a C struct

and used later for throwing an exception. Since TurboJet tracks only constant values

of C variables of simple types, when it encounters the ThrowByName, it cannot tell

the exact exception class. Consequently, it will report the method that contains the code

can possibly throw java.lang.Exception, the top checked-exception class. How-

ever, the native method’s Java-side signature declares a more precise exception class,

java.io.IOException. We could further improve TurboJet’s static analysis to re-

duce these false positives. But since the total number of false positives is quite small,

we did not feel it is necessary.
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...
data−>name = ”java.io.IOException”;
...

if(data−>name != NULL){
ThrowByName(env,data−>name);

}
...

Figure 2.13: A typical example of false positives.

Results on mishandling JNI exceptions

The warnings of mishandling JNI exceptions in the table are the results of applying

strategies of whitelisting, static taint analysis and warning recovery. The overall false

positive rate among all benchmark JNI programs is 23%. Our system achieves a rela-

tively high precision. Of the 147 true bugs, 129 of them are because of implicit throws,

while the rest are because of explicit throws. That is, the majority of the errors are

because programmers forgot to check for exceptions after calling JNI functions. This

result is consistent with our expectation.

False positives. False positives are mainly of two kinds. The first kind includes those

places where external library functions are invoked with tainted pointer parameters. For

soundness, our system issued warnings for them because they might dereference the

tainted pointers. For future work, this kind of false positives could be removed by either

including the source code of the library functions, or by adding additional manual an-

notation about how parameters are used. The second kind of false positives are because

of flow insensitivity of our static taint analysis. Our design favored scalability and we

believe the overall FP rate supports this tradeoff.

To assess the effectiveness of warning recovery and static taint analysis, we have

carried out two additional sets of experiments. First, we tested a version of the sys-
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JNI packages V1 FP(%) V2 FP(%)

java.io 0 0 0 0
java.lang.math 0 0 0 0
java.lang.non-math 17 71 38 87
java.net 132 55 318 81
java.nio 16 50 30 73
java.security 0 0 0 0
java.sql 0 0 0 0
java.util.timezone 0 0 0 0
java.util.zip 35 43 48 58
java.util.other 0 0 0 0
java-gnome 24 46 83 84
jogl 5 0 5 0
libec 0 0 0 0
libreadline 0 0 0 0
posix 66 46 108 67
spread 0 0 0 0

TOTAL 295 50 630 77

Table 2.3: Experimental results for assessing effectiveness of warning recovery

and static taint analysis

tem without warning recovery; we denote this version by V1. We also tested a version

with neither warning recovery nor static taint analysis; we denote this version by V2.

Table 2.3 presents the results. Without warning recovery, the overall FP rate would be

50%, as compared to 23%. Further removing the component of static taint analysis

would hike the FP rate to 77%. These experiments demonstrated that warning recov-

ery and static taint analysis are very effective in terms of reducing the number of false

positives.

False negatives

TurboJet is designed to be conservative, though it is possible for TurboJet to have false

negatives due to errors in its implementation. So we first conducted manual audit in half
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of the packages of our benchmark programs to obtain the ground truth, and compared it

with the results reported by TurboJet. In this way, we found and fixed several bugs in

early implementations of TurboJet. Clearly, this is not a proof that TurboJet is sound.

For the claim of soundness, we would need to (1) take a formalized semantics of C

and the JNI, (2) formalize TurboJet, and (3) show that it can catch all relevant bugs.

Although there has been efforts on formalizing C [69, 46] and the JNI [84], they target

only subsets of C and the JNI and omit many important language features. Therefore, a

formal proof of soundness remains a difficult task. On the other hand, there are many

places where the system would be obviously unsound if we did not make a specific

design choice. One example we have discussed before is issuing warnings when an

external function takes tainted pointers as parameters. Without doing that, the system

would be unsound as the external function might dereference the pointers.

2.7.2 Efficiency

Table 2.4 presents the analysis time of the TurboJet system (for detecting both types of

bugs) on the benchmark programs. As we can see, TurboJet’s coarse-grained exception

analysis (first stage) is very efficient, taking only 420 µs for all packages. We group the

time for the second-stage exception analysis and the time for warning generation into

the column named “2nd stage time”. It dominates the total time taken by TurboJet. In

all, it takes about 14 s for all packages.

Effectiveness of the two-stage system. Table 2.4 also presents statistics that are used to

evaluate the effectiveness of the two-stage design of TurboJet’s exception analysis. For

each package, the third column (LOC (K) retained/reduced) shows the lines of source
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JNI 1st. r&r 2nd. tt. i&l w/o
Package time time time man. 1st.

java.io 30 0.7/1 3.07 3.07 2/0 26.7
java.lang.math 30 0/11 0 30µs 2/9 2.09
java.lang.non-math 30 0.5/3 0.1 0.1 3/0 37.11
java.net 100 0.5/9 3.43 3.43 10/0 101.13
java.nio 10 0.04/0.3 0.50 0.50 0.4/0 0.31
java.security 0 0/0.08 0 0 0.08/0 0.05
java.sql 0 0/0.02 0 0 0.02/0 0.00171
java.util.timezone 0 0/0.7 0 0 0.7/0 2.12
java.util.zip 20 0.4/14 1.13 1.13 0.8/13 72.88
java.util.other 0 0/0.02 1.00 1.00 0.02/0 0.10
java-gnome 15 0.3/5 1.71 1.71 0.6/5 45.27
jogl 5 0.3/0.3 1.09 1.09 0.3/0.3 17.37
libec 20 0.1/19 0.61 0.61 0.4/19 70.21
libreadline 20 0.1/2 0.05 0.05 0.7/1 19.31
posix 20 0.3/2 0.08 0.08 2/0 11.28
spread 60 0.3/27 0.51 0.51 2/25 12.97

TOTAL 360 4/94 13.28 13.28 25/72 418.9

Note:
1st stage time in µs (1st. time)
LOC (K) retained/reduced (r&r)
2nd stage time in s (2nd. time)
Total time in s (tt. time)
Interface/library LOC (K) by manual separation (i&l man.)
Time in s without 1st stage (w/o 1st.).

Table 2.4: Efficiency evaluation of TurboJet.

code retained and reduced by the coarse-grained analysis. The sum of the two numbers

is the total lines of source code of the package. The numbers show that it is very effective

in terms of separating the code that affects Java’s state. It reduces the amount of code

necessary to be analyzed by almost 97%. Only a small portion of code is left for the

fine-grained analysis.

The column “interface/library LOC (K) by manual separation” shows the lines of in-

terface code and library code determined by a manual separation. For each package, the

sum of the two numbers determined by the manual separation is the size of the package

62



www.manaraa.com

and is therefore the same as the sum in the third column (LOC (K) retained/reduced).

The manual separation is a quick, rough classification using files as the unit. That is, if

a file contains some JNI function calls, we put it under the category of interface code.

When compared to the column of “LOC (K) retained/reduced” by the first stage, we see

our automatic algorithm is better at separating interface code and library code; the main

reason is that it uses functions as the classification unit.

Finally, the column “Time without 1st stage” presents the analysis time if the whole

package is fed directly into the rest of TurboJet without going through the first stage.

This resulted in a dramatic slowdown in runtime.

The experiments demonstrate that our system is efficient and scalable. For nearly

100K lines of code, it took about 14 s to examine all of them.

2.7.3 Comparison with previous studies

To further validate the design of TurboJet, we compared our work with our two previous

studies that used alternative design approaches for exception analysis.

Comparison with an alternative exception analysis

In our previous work on finding bugs of mishandling JNI exceptions [49], we imple-

mented an interprocedural exception analysis. It calculates whether an exception is

pending at every program point, but does not determine the set of possible pending ex-

ceptions. Since its goal is simpler, it uses a specially designed lattice to get a primitive

form of path sensitivity. Furthermore, it is not context sensitive. TurboJet’s exception
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analysis was started with that algorithm but we quickly discovered its imprecision led

to too many false positives when calculating exception effects. The previous system has

an acceptable false-positive rate only because its exception analysis is combined with

other kinds of analysis (in particular, static taint analysis); this strategy worked well

when identifying bugs because of mishandling JNI exceptions but would lead to high

false-positive rates when calculating exception effects. As a result, we gradually moved

to a path-sensitive and context-sensitive system. The need for context sensitivity was

also pointed out by J-Saffire [26], which is why they used polymorphic type inference

rather than a monomorphic version.

Table 2.5 presents comparison results between TurboJet and a version of TurboJet

that uses the crude exception analysis as in [49]. CrudeExn stands for the version with

the crude exception analysis. The table presents false-positive rates and running times

of the two versions for finding inconsistent exception declarations.

It is clear from the results that TurboJet’s exception analysis is more accurate.

The improvement in terms of reducing false positive rate is more than 50%. Since

CrudeExn only determines whether or not there is an exception pending from the na-

tive side, a warning is issued if a native method’s type signature declares an exception

class that is a strict subclass of java.lang.Exception and CrudeExn determines

that an exception is pending from the native side. As a result, it causes higher false-

positive rates.

Comparison with an empirical study

A previous empirical study on Sun’s JDK 1.6 found a number of errors of mishan-

dling JNI exceptions [86]. The study used grep-based scripts to examine 38,000
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JNI package FP (%) Time

CrudeExn TurboJet CrudeExn TurboJet

java.io 80 67 1.25 3.07
java.lang.math 0 0 5µ 30µ
java.lang.non-math 50 0 0.05 0.1
java.net 100 100 1.25 3.43
java.nio 75 0 0.14 0.50
java.security 0 0 0 0
java.sql 0 0 0 0
java.util.timezone 0 0 0 0
java.util.zip 60 0 0.68 1.13
java.util.other 0 0 0.81 1.00
java-gnome 50 40 0.87 1.71
jogl 75 0 0.45 1.09
libec 67 0 0.44 0.61
libreadline 50 0 0.01 0.05
posix 83 0 0.01 0.08
spread 50 0 0.22 0.51

TOTAL 67 32 6.18 13.28

Table 2.5: Comparing TurboJet with an alternative exception analysis on finding

inconsistent exception declarations.

lines of C code and found 35 counts of mishandling JNI exceptions. Table 2.6

shows the comparison between the results of TurboJet and the empirical study on

the set of JDK directories that are common in both studies. TurboJet uncovered

all of the errors that were found in the previous study; it also discovered more

errors. We like to note, however, that in deciding whether a warning is a true

bug, we exercised a more conservative approach and adhered to the JNI’s spec-

ification more closely than the one taken in the previous study. For example,

TurboJet assumes JNI function GetFieldID can throw NoSuchFieldError,

ExceptionInInitializerError, and OutOfMemoryError exceptions, and

issues a warning when insufficient error checking occurs. The previous study took

a more liberal measure on such cases; for example, it ignored the possibility of

OutOfMemoryError exception in the case of GetFieldID. This discrepancy con-
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tributes to the majority of the difference in errors shown in the table (roughly about two

thirds). Another benefit of our tool is its much lower false-positive rate, which means

much less manual work to sift through warnings for identifying true bugs.

Results The previous study TurboJet

Warnings 556 132
True bugs 35 93
FP % 93.7 29.5

Table 2.6: Comparison with the previous study [86] (of the 35 errors in the previ-

ous study, 11 are due to explicit throws and 24 due to implicit throws).

2.8 An Eclipse plug-in tool

We implemented TurboJet as an Eclipse plug-in tool. This tool identifies both types of

bugs described in this chapter, and provides a developer-friendly graphic user interface.

The plug-in is built as an additional checker that extends Codan [16], an open source

project that performs a variety of static code analyses and checking on C/C++ code in

Eclipse.

The TurboJet plug-in has a user-interface frontend and a code-analysis backend. For

the frontend, the plug-in leverages Codan to extract information from source code, to

configure settings (including the path to Java class files and which types of bugs should

be identified), and to perform code navigation. The plug-in passes information on both

the Java class files and C source code to the backend, which invokes the exception

analysis system.

Like any other checker in Codan, the TurboJet plug-in can be easily configured in-

side Eclipse. A JNI developer may disable the checker, configure bug levels (e.g., warn-
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Figure 2.14: An example of TurboJet plug-in’s warning on inconsistent exception

declarations.

Figure 2.15: An example of TurboJet plug-in’s warning on mishandling JNI ex-

ceptions.

ings or errors), and select which particular type of bug (i.e., mishandling JNI exceptions

or inconsistent exception declarations) to check.

Fig. 2.14 and Fig. 2.15 show examples of the TurboJet plug-in’s warnings on in-

consistent exception declarations and mishandling JNI exceptions, respectively. The

problematic code is highlighted with warnings. Developers are provided with warning

messages, and can navigate to the buggy code by double-clicking on the messages.

The TurboJet Eclipse plug-in is available for download [3].
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2.9 Summary

Exceptions are commonly used in FFIs as ways for the foreign language to report error

conditions to the host language. FFI programmers often make mistakes related to excep-

tions since FFIs do not provide support for exception checking and exception handling.

We have designed and implemented a novel static analysis framework for finding

bugs in exceptional situations in JNI programs. TurboJet is a system that statically

analyze native code (1) to extend Java’s rules for checked exceptions to native code

and (2) to identify errors of mishandling JNI exceptions. It is both scalable and has

high precision thanks to its carefully engineered trade-offs. Our experimental results

demonstrated the effectiveness of our techniques. We have also built a practical Eclipse

plug-in that can be used by programmers to catch errors in their JNI code.
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CHAPTER 3

NATIVE CODE ATOMICITY FOR JAVA

3.1 Introduction

Atomicity in programming languages is a fundamental concurrency property: a pro-

gram fragment is atomic if its execution sequence—regardless of how the latter inter-

leaves with other concurrent execution sequences at run time—exhibits the same “se-

rial” behavior (i.e., as if no interleaving happened). Atomicity significantly simplifies

the reasoning about concurrent programs because invariants held by the atomic region in

a serial execution naturally holds for a concurrent execution. Thanks to the proliferation

of multi-core and many-core architectures, there is a resurgence of interest in atomicity,

with active research including type systems and program analyses for atomicity en-

forcement and violation identification (e.g., [24, 58, 30, 20]), efficient implementation

techniques (e.g., [29]) and alternative programming models (e.g., [4, 53, 10]).

As we adopt these research ideas to serious production settings, one major hurdle

to cross is to support atomicity across foreign function interfaces (FFIs). Almost all

languages support an FFI for interoperating with modules in low-level languages (e.g.,

[51, 72, 47]). For instance, numerous classes in java.lang.* and java.io.*

packages in the Java Development Kit (JDK) use the Java Native Interface (JNI), the FFI

for Java. Existing atomicity solutions rarely provide direct support for FFIs. More com-

monly, code accessed through FFIs—called native code in JNI—is treated as a “black

box.”

The “black box” assumption typically yields two implementations, either leading to
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severe performance penalty or unsoundness. In the first implementation, the behavior

of the native code is over-approximated as “anything can happen,” i.e., any memory

area may be accessed by the native code. In that scenario, a “stop-the-world” strat-

egy is usually required to guarantee soundness when native code is being executed—all

other threads must be blocked. In the second implementation, the runtime behavior of

native code is ignored, an unsound under-approximation. Atomicity violations may oc-

cur when native code happens to access the same memory area that it interleaves with.

Such systems, no matter how sophisticated their support for atomicity for non-native

code, technically conform to weak atomicity [57] at best. The lack of atomicity support

for native code further complicates the design of new parallel/concurrent programming

models. For example, several recent languages [4, 41, 10] are designed to make pro-

grams atomic by default, promoting the robustness of multi-core software. Native code

poses difficulties for these languages: the lack of atomicity support for it is often cited

[4] as a key reason for these languages to design “opt-out” constructs from their other-

wise elegant implicit atomicity models.

We present JATO for atomicity enforcement across the JNI. It is standard knowledge

that atomicity enforcement requires a precise accounting of the relationship between

threads and their accessed memory. JATO is built upon the simple observation that de-

spite rather different syntax and semantics between Java and native code, the memory

access of both languages can be statically abstracted in a uniform manner. JATO first

performs a static analysis to abstract memory access from both non-native code and na-

tive code, and then uses a lock-based implementation to guarantee atomicity, judiciously

adding protection locks to selected memory locations. With the ability to treat code on

both sides of the JNI as “white boxes” and perform precise analysis over them, our so-

lution is not only sound, but also practical in terms of performance as demonstrated by
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a prototype implementation. This system makes the following contributions:

• We propose a novel static analysis to precisely identify the set of Java objects

whose protection is necessary for atomicity enforcement. The analysis is con-

structed as a constraint-based inference, which uniformly extracts memory-access

constraints from JNI programs.

• We report a prototype implementation, demonstrating the effectiveness and the

performance impact on both micro-benchmarks and real-world applications.

• We propose a number of optimizations to further soundly improve the perfor-

mance, such as no locks on read-only objects.

3.2 Background and assumptions

The JNI allows Java programs to interface with low-level native code written in C, C++,

or assembly languages. It allows Java code to invoke and to be invoked by native meth-

ods. A native method is declared in a Java class by adding the native modifier to a

method. For example, the following Node class declares a native method named add:

class Node {int i=10; native void add (Node n);}

Once declared, native methods are invoked in Java in the same way as how Java

methods are invoked. Note that the Java side may have multiple Java threads running,

each of which may invoke some native method.

The implementation of a native method receives a set of Java-object references from

the Java side; for instance, the above add method receives a reference to this object
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and a reference to the n object. A native-method implementation can interact with Java

through a set of JNI interface functions (called JNI functions hereafter) as well as using

features provided by the native language. Through JNI functions, native methods can

inspect/modify/create Java objects, invoke Java methods, and so on. As an example, it

can invoke MonitorEnter to lock a Java object and MonitorExit to unlock a Java

object.

Assumptions. In any language that supports atomicity, it is necessary to define the

atomic region, a demarcation of the program to indicate where an atomic execution

starts and where it ends. One approach is to introduce some special syntax and ask pro-

grammers to mark atomic regions – such as atomic blocks. JATO’s assumption is that

each native method forms an atomic region. This allows us to analyze unannotated JNI

code directly. Furthermore, we believe that this assumption matches Java programmers’

intuition nicely. Java programmers often view native methods as black boxes, avoiding

the reasoning about interleaving between Java code and native code. Finally, the as-

sumption does not affect expressiveness. For instance, an atomic region with two native

method invocations can be encoded as creating a third native method whose body con-

tains the two invocations. If there is Java code fragment in between the two invocations,

the encoded version can model the Java code by inserting a Java callback between the

two invocations. Overall, the core algorithm we propose stays the same regardless of

the demarcation strategy of atomic regions.

When enforcing native-method atomicity, JATO focuses on those Java objects that

cross the Java-native boundary. It ignores the memory regions owned by native methods.

For instance, native code might have a global pointer to a memory buffer in the native

heap and lack of protection of the buffer might cause atomicity violations. Enforcing
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this form of atomicity can be performed on the native-side alone (e.g., [8]). Furthermore,

native code cannot pass pointers that point to C buffers across the boundary because

Java code does not understand C’s type system; native code has to invoke JNI functions

to create Java objects and pass references to those Java objects across the boundary.

Because of these reasons, JATO focuses on language-interoperation issues and analyzes

those cross-boundary Java objects.

3.3 The formal model

In this section, we use an idealized JNI language to describe the core of JATO: a

constraint-based lock inference algorithm for ensuring the atomicity of native methods.

3.3.1 Abstract syntax

The following BNF presents the abstract syntax of an idealized JNI language where

notation X represents a sequence of X’s. Its Java subset is similar to Featherweight

Java (FJ) [33], but with explicit support for field update and let bindings. For simplicity,

the language omits features such as type casting, constructors, field initializers, multi-

argument methods on the Java side, and heap management on the native side.
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P ::= class c extends c {F M N } classes

F ::= c f fields

M ::= c m(c x ){e} Java methods

N ::= native c m(c x ){t} native methods

e ::= x | null | e.f | e.f:=e | e.m(e) | newℓ c | let x = e in e Java terms

t ::= x | null | GetField(t, fd) | SetField(t, fd , t) native terms

| NewObjectℓ(c) | CallMethod(t,md , t) | let x = t in t

bd ::= e | t method body

fd ::= 〈c, f〉 field ID

md ::= 〈c,m〉 method ID

A program is composed of a sequence of classes, each of which in turn is composed

of a sequence of fields F , a sequence of Java methods M , and a sequence of native

methods N . In this JNI language, both Java and native code are within the definition

of classes; real JNI programs have separate files for native code. As a convention,

metavariable c(∈ CN) is used for class names, f for field names, m for method names,

and x for variable names. The root class is Object. We use e for a Java term, and t for

a native term. A native method uses a set of JNI functions for accessing Java objects.

GetField and SetField access a field via a field ID, and CallMethod invokes a

method defined on a Java object, which could either be implemented in Java or in native

code. Both the Java-side instantiation expression (new) and the native-side counterpart

(NewObject) are annotated with labels ℓ(∈ LAB) and we require distinctness of all

ℓ’s in the code. We use notation LP : LAB 7→ CN to represent the mapping function

from labels to the names of the instantiated classes as exhibited in program P . We use
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class Node extends Object {
int i=10;
native void add (Node n) {
x1=GetField(this,<Node,i>);
x2=GetField(n,<Node,i>);
SetField(this,<Node,i>,x1+x2);}}

class Thread2 extends Thread {
Node n1, n2;
Thread2(Node n1, Node n2) {
this.n1=n1; this.n2=n2;}

void run() {n2.add(n1);}}

class Main extends Object {
void main() {
n1=new Nodeℓ1();
n2=new Nodeℓ2();
th=new Thread2ℓth

(n1,n2);
th.start();
n1.add(n2);

}
}

Figure 3.1: A running example

mbody(m, c) to compute the method body of m of class c, represented as x .bd where

x is the parameter and bd is the definition of the method body. The definition of this

function is identical to FJ’s namesake function when m is a Java method. When m is a

native method, the only difference is that the method should be looked up in N instead

of M . We omit this lengthy definition in this short presentation.

Throughout this section, we will use a toy example to illustrate ideas, presented in

Fig. 3.1. We liberally use void and primitive types, constructors, and use “x = e1; e2”

for let x = e1 in e2. Note that the Node class contains a native method for adding

integers of two Node objects and updating the receiver object. The goal in our context

is to insert appropriate locks to ensure the execution of this native method being atomic.

3.3.2 Constraint generation: an overview

Atomicity enforcement relies on a precise accounting of memory access, which in JATO

is abstracted as constraints. Constraints are generated through a type inference algo-

rithm, defined in two steps: (1) constraints are generated intraprocedurally, both for

Java methods and native methods; (2) all constraints are combined together through a
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closure process, analogous to interprocedural type propagation. The two-step approach

is not surprising for object-oriented type inference, because dynamic dispatch approxi-

mation and concrete class analysis are long known to be intertwined in the presence of

interprocedural analysis [70]: approximating dynamic dispatch – i.e., determine which

methods would be used to enable interprocedural analysis – requires the knowledge of

the concrete classes (i.e., the class of the runtime object) of the receiver, but interproce-

dural analysis is usually required to compute the concrete classes of the receiver object.

JATO performs step (1) to intraprocedurally generate constraints useful for dynamic dis-

patch approximation and concrete class analysis, and then relies on step (2) to perform

the two tasks based on the constraints. The details of the two steps are described in

Section 3.3.3 and Section 3.3.4, respectively.

One interesting aspect of JATO is that both Java code and native code will be ab-

stracted into the same forms of constraints after step (1). JATO constraints are:

K ::= κ constraint set

κ ::= α
θ
−→ α′ | α ≤ α′ | [α.m]α

′

constraint

θ ::= R | W access mode

α ::= ℓ | φ | thisO | thisT abstract object/thread

| α.f | α.m+ | α.m−

An access constraint α
θ
−→ α′ says that an (abstract) object α accesses an (abstract)

object α′, and the access is either a read (θ = R) or a write (θ = W). Objects in JATO’s

static system are represented in several forms. The first form is an instantiation site label

ℓ. Recall earlier, we have required all ℓ’s associated with the instantiation expressions

(new or NewObject) to be distinct. It is thus natural to represent abstract objects with

instantiation site labels. Our formal system’s precision is thus middle-of-the-road: we
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differentiate objects of the same class if they are instantiated from different sites, but

reins in the complexity by leaving out more precise features such as nCFA [79] or n-

object context-sensitivity [61]. The other forms of α are used by the type inference

algorithm: label variables φ ∈ LVAR, thisO for the object enclosing the code being

analyzed, thisT for the thread executing the code being analyzed, α.f for an alias to

field f of object α, and α.m+ and α.m− for aliases to the return value and the formal

parameter of a method invocation to method name m of α, respectively.

The additional two forms of constraints, α ≤ α′ and [α.m]α
′

, are used for concrete

class analysis and dynamic dispatch approximation, respectively. Constraint α ≤ α′

says that α may flow into α′. At a high level, one can view this form of constraint

as relating two aliases. (As we shall see, the transitive closure of the binary relation

defined by ≤ is de facto a concrete class analysis.) Constraint [α.m]α
′

is a dynamic

dispatch placeholder, denoting method m of object α is being invoked by thread α′.

3.3.3 Intraprocedural constraint generation

We now describe the constraint-generation rules for Step (1) described in Section 3.3.2.

Fig. 3.2 and Fig. 3.3 are rules for Java code and native code, respectively. The class-

level constraint-generation rules are defined in Fig. 3.4. Environment Γ is a mapping

from x ’s to α’s. Constraint summary M is a mapping from method names to constraint

sets. Judgment Γ ⊢ e : α\K says expression e has type α under environment Γ and

constraints K. Since no confusion can exist, we further use Γ ⊢ t : α\K to represent the

analogous judgment for native term t. Judgment ⊢cls class c . . . \M says the constraint

summary of class c is M. Operator � is a mapping update: given a mapping U , U �

[u 7→ v] is identical to U except element u maps to v in U � [u 7→ v].
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(T-Read)
Γ ⊢ e : α\K

Γ ⊢ e.f : α.f\K ∪ {thisT
R
−→ α}

(T-Write)
Γ ⊢ e : α\K Γ ⊢ e′ : α′\K′

Γ ⊢ e.f:=e′ : α′\K ∪ K′ ∪ {α′ ≤ α.f, thisT
W
−→ α}

(T-Msg)
Γ ⊢ e : α\K Γ ⊢ e′ : α′\K′

Γ ⊢ e.m(e′) : α.m+\K ∪ K′ ∪ {α′ ≤ α.m−, [α.m]thisT}

(T-Thread)
Γ ⊢ e : α\K javaT (Γ, e) is of a thread class

Γ ⊢ e.start() : α\K ∪ {[α.run]α}

(T-New) Γ ⊢ newℓ c : ℓ\∅
(T-NewThread)

c is of a thread class φ fresh

Γ ⊢ newℓ c : ℓ\{ℓ ≤ φ, φ ≤ ℓ}

(T-Var) Γ ⊢ x : Γ(x )\∅ (T-Null) Γ ⊢ null : ℓnull\∅

(T-Let)
Γ ⊢ e : α\K Γ � [x 7→ α] ⊢ e′ : α′\K′

Γ ⊢ let x = e in e′ : α′\K ∪ K′

Figure 3.2: Java-Side Intraprocedual Constraint Generation

Observe that types are abstract objects (represented by α’s). Java nominal typing

(class names as types) is largely orthogonal to our interest here, so our type system does

not include it. Taking an alternative view, one can imagine we only analyze programs

already typed through Java-style nominal typing. For that reason, we liberally use func-

tion javaT (Γ, e) to compute the class names for expression e.

On the Java side, (T-Read) and (T-Write) generate constraints to represent the read-

/write access from the current thread (thisT) to the object whose field is being read-

/written (α in both rules). The constraint α′ ≤ α.f in (T-Write) abstracts the fact that

e′ flows into the field f of e, capturing the data flow. The flow constraint generated by

(T-Msg) is for the flow from the argument to the parameter of the method. That rule
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(TN-Read)
Γ ⊢ t : α\K fd = 〈c, f〉

Γ ⊢ GetField(t, fd) : α.f\K ∪ {thisT
R
−→ α}

(TN-Write)
Γ ⊢ t : α\K Γ ⊢ t′ : α′\K′ fd = 〈c, f〉

Γ ⊢ SetField(t, fd , t′) : α′\K ∪ K′ ∪ {α′ ≤ α.f, thisT
W
−→ α}

(TN-Msg)
Γ ⊢ t : α\K Γ ⊢ t′ : α′\K′ md = 〈c,m〉

Γ ⊢ CallMethod(t,md , t′) : α.m+\K ∪ K′ ∪ {α′ ≤ α.m−, [α.m]thisT}

(TN-Thread)
Γ ⊢ t : α\K md = 〈c,start〉 c is a thread class

Γ ⊢ CallMethod(t,md) : α\K ∪ {[α.run]α}

(TN-New) Γ ⊢ newℓ c : ℓ\∅

(TN-NewThread)
c is a thread class φ fresh

Γ ⊢ NewObjectℓ(c) : ℓ\{ℓ ≤ φ, φ ≤ ℓ}

(TN-Var) Γ ⊢ x : Γ(x )\∅ (TN-Null) Γ ⊢ null : ℓnull\∅

(TN-Let)
Γ ⊢ t : α\K Γ � [x 7→ α] ⊢ t′ : α′\K′

Γ ⊢ let x = t in t′ : α′\K ∪ K′

Figure 3.3: Native-Side Intraprocedural Constraint Generation

in addition generates a dynamic dispatch placeholder. (T-Thread) models the somewhat

stylistic way Java performs thread creation: when an object of a thread class is sent a

start message, the run method of the same object will be wrapped up in a new thread

and executed. (T-New) says that the label used to annotate the instantiation point will be

used as the type of the instantiated object. (T-NewThread) creates one additional label

variable to represent the thread object. The goal here is to compensate the loss of pre-

cision of static analysis, which in turn would have affected soundness: a thread object

may very well be part of a recursive context (a loop for example) where one instanti-

ation point may be mapped to multiple runtime instances. The static analysis needs to
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(T-Cls)

⊢cls class c0 . . . \M
[this 7→ thisO, x 7→ thisO.m−] ⊢ bd : α\K for all mbody(m, c) = x .bd

K′ = K ∪ {α ≤ thisO.m+}

⊢cls class c extends c0 {F M N }\(M � m 7→ K′)

(T-ClsTop) ⊢cls class Object\[]

Figure 3.4: Class-Level Constraint Generation

be aware if all such instances access one shared memory location – a soundness issue

because exclusive access by one thread or shared access by multiple threads have dras-

tically different implications in reasoning about multithreaded programs. The solution

here is called doubling [41, 90], treating every instantiation point for thread objects as

two threads. Observe that we do not perform doubling for non-thread objects in (T-New)

because there is no soundness concern there. The rest of the three rules should be obvi-

ous, where ℓnull is a predefined label for null. For the running example, the following

constraints will be generated for the two classes written in Java:

Main : {main 7→ {ℓth ≤ φ2, φ2 ≤ ℓth , [ℓth .run]
ℓth , ℓ2 ≤ ℓ1.add

−, [ℓ1.add]
thisT}}

Thread2 : {run 7→ {ℓ1 ≤ ℓ2.add
−, [ℓ2.add]

thisT}}

The native-side inference rules have a one-on-one correspondence with the Java-

side rules – as related by names – and every pair of corresponding rules generate the

same form of constraints. This is a crucial insight of JATO: by abstracting the two

worlds of Java syntax and native code syntax into one unified constraint representation,

the artificial boundary between Java and native code disappears. As a result, thorny
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problems such as callbacks (to Java) inside native code no longer exists – the two worlds,

after constraints are generated, are effectively one. The constraints for the Node class

in the running example are:

Node : {add 7→ {thisT
R
−→ thisO, thisT

W
−→ thisO, thisT

R
−→ thisO.add−}}

3.3.4 Constraint closure

Now that the constraint summary has been generated on a per-class per-method basis,

we can discuss how to combine them into one global set. This is defined by computing

the constraint closure, defined as follows:

Definition 3 (Constraint Closure) The closure of program P with entry method md ,

denoted as JP,md K is the smallest set that satisfies the following conditions:

• Flows: ≤ is reflexive and transitive in JP,md K.

• Concrete Class Approaching: If {α′ ≤ α} ∪ K ⊆ JP,md K, then K{α′/α} ⊆

JP,md K.

• Dynamic Dispatch: If [ℓ.m]ℓ0 ∈ JP,md K, then M(m){ℓ/thisO}{ℓ0/thisT} ⊆

JP,md K where LP (ℓ) = c and ⊢cls class c . . . \M.

• Bootstrapping: {[ℓBO.m]ℓBT , ℓBP ≤ ℓBO.m
−} ⊆ JP,md K where md = 〈c,m〉.

The combination of Flows and Concrete Class Approaching is de facto a concrete

class analysis, where the “concrete class” in our case is the object instantiation sites
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(not Java nominal types): the Flows rule interprocedurally builds the data flow, and the

Concrete Class Approaching rule substitutes a flow element with one “up stream” on

the data flow. When the “source” of the data flow – an instantiation point label – is

substituted in, concrete class analysis is achieved. Standard notation K{α′/α} substi-

tutes every occurrence of α in K with α′. Dynamic Dispatch says that once the receiver

object of an invocation resolves to a concrete class, dynamic dispatch can thus be re-

solved. The substitutions of thisO and thisT are not surprising from an interproce-

dural perspective. The last rule, Bootstrapping, bootstraps the closure. ℓBO, ℓBT, ℓBP are

pre-defined labels representing the bootstrapping object (the one with method md ), the

bootstrapping thread, and the parameter used for the bootstrapping invocation.

For instance, if P is the running example, the following constraints are among the

ones in the closure from its main method, i.e., JP, 〈cmain,mmain〉 K:

ℓBT
R
−→ ℓ1 ℓBT

W
−→ ℓ1 ℓBT

R
−→ ℓ2

ℓth
R
−→ ℓ2 ℓth

W
−→ ℓ2 ℓth

R
−→ ℓ1

That is, the bootstrapping thread performs read and write access to object ℓ1 and read

access to object ℓ2. The child thread performs read access to object ℓ1 and read and write

access to object ℓ2. This matches our intuition about the program.

3.3.5 Atomicity enforcement

Based on the generated constraints, JATO infers a set of Java objects that need to be

locked in a native method to ensure its atomicity. JATO also takes several optimizing

steps to remove unnecessary locks while still maintaining atomicity.
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Lock-all. The simplest way to ensure atomicity is to insert locks for all objects that a

native method may read from or write to. Suppose we need to enforce the atomicity of

a native method md in a program P , the set of objects that need to be locked are:

Acc(P,md)
def
= {α | (α′ θ

−→ α) ∈ JP,md K ∧ (α ∈ LAB ∨ labs(α) ⊆ { ℓBO, ℓBP }) }

The first predicate (α′ θ
−→ α) ∈ JP,md K says that α is indeed read or written. The

α’s that satisfy this predicate may be in a form that represents an alias to an object, such

as ℓ.f1.f2.m
+, and it is clearly desirable to only inform the lock insertion procedure of

the real instantiation point of the object (the α ∈ LAB predicate) – e.g., “please lock the

object instantiated at label ℓ33.” This, however, is not always possible because the in-

stantiation site for the object enclosing the native method and that for the native method

parameter are abstractly represented as ℓBO and ℓBP, respectively. It is thus impossible

to concretize any abstract object whose representation is “built around them”. For ex-

ample, ℓBO.f3 means that the object is stored in field f3 of the enclosing object ℓBO, and

access to the stored object requires locking the enclosing object. This is the intuition

behind predicate labs(α) ⊆ { ℓBO, ℓBP }, where labs(α) enumerates all the labels in α.

For the running example, the set of objects to lock for the native add method –

Acc(P, 〈Node, add〉) – is { ℓBO, ℓBP }, meaning both the enclosing object and the param-

eter needs to be locked.

Locking all objects in Acc(P,md) is sufficient to guarantee the atomicity of md .

This comes as no surprise: every memory access by the native method is guarded by a

lock. The baseline approach here is analogous to a purely dynamic approach: instead

of statically computing the closure and the set of objects to be locked as we define here,
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one could indeed achieve the same effect by just locking at run time for every object

access.

In the lock-all approach, JATO inserts code that acquires the lock for each object in

the set as computed above and releases the lock at the end. The lock is acquired by JNI

function MonitorEnter and released by MonitorExit.

Lock-on-write.

In this strategy, we differentiate read and write access, and optimize based on the

widely known fact that non-exclusive reads and exclusive writes are adequate to guar-

antee atomicity. The basic idea is simple: given a constraint set K, only elements in the

following set needs to be locked, where size computes the size of a set:

lockS (K)
def
= {ℓ | size({ℓ′ | ℓ′

W
−→ ℓ ∈ K}) 6= 0 ∧ size({ℓ′ | ℓ′

θ
−→ ℓ ∈ K}) > 1}

It would be tempting to compute the necessary locks for enforcing the atomicity

of native method md of program P as lockS (JP,md K). This unfortunately would be

unsound. Consider the running example. Even though the parameter object n is only

read accessed in native method add, it is not safe to remove the lock due to two facts:

(1) in the main thread, add receives object ℓ1 as the argument; (2) in the child thread,

object ℓ1 is mutated. If the lock to the parameter object n were removed, atomicity of

add could not be guaranteed since the integer value in the parameter object may be

mutated in the middle of the method. Therefore, it is necessary to perform a global

analysis to apply the optimization.

The next attempt would be to lock objects in lockS (JP, 〈cmain,mmain〉 K). Clearly,

this is sound, but it does not take into the account that native method md only accesses
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a subset of these objects. To compute the objects that are accessed by md , we define

function AccG(P,md) as the smallest set satisfying the following conditions, where

md = 〈c,m〉 and K0 = JP, 〈cmain,mmain〉 K:

• If {[ℓ.m]ℓ0 , ℓ1 ≤ ℓ.m−} ⊆ K0 where LP (ℓ) = c, then

Acc(P,md){ℓ/ℓBO}{ℓ0/ℓBT}{ℓ1/ℓBP} ⊆ AccG(P,md) .

• If ℓ ≤ α ∈ K0 and α ∈ AccG(P,md), then ℓ ∈ AccG(P,md).

In other words, Acc(P,md) almost fits our need, except that it contains placeholder

labels such as ℓBO, ℓBT, and ℓBP. AccG concretizes any abstract object whose representa-

tion is dependent on them. With this definition, we can now define our strategy: locks

are needed for native method md of program P for any object in the following set:

AccG(P,md) ∩ lockS (JP, 〈cmain,mmain〉 K).

Lock-at-write-site. Instead of acquiring the lock of an object at the beginning of a

native method and releasing the lock at the end, this optimization inserts locking around

the code region of the native method that accesses the object. If there are multiple

accesses of the object, JATO finds the smallest code region that covers all accesses and

acquires/releases the lock only once.

3.4 Prototype implementation

We implemented a prototype system based on the constraint-based system described in

the previous section. Java-side constraint generation in JATO is built upon Cypress [94],
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a static analysis framework focusing on memory access patterns. Native-side constraint

generation is implemented in CIL [65], an infrastructure for analyzing and transforming

C code. The rest of JATO is developed in around 5,000 lines of OCaml code.

One issue that we have ignored in the idealized JNI language is the necessity of

performing Java-type analysis in native code. In the idealized language, native methods

can directly use field IDs in the form of 〈c, f〉 (and similarly for method IDs). But in

real JNI programs, native methods have to invoke certain JNI functions to construct

those IDs. To read a field of a Java object, native method must take three steps: (1)

use GetObjectClass to get a reference to the class object of the Java object; (2) use

GetFieldID to get a field ID for a particular field by providing the field’s name and

type; (3) use the field ID to retrieve the value of the field in the object.

For instance, the following program first gets obj’s field nd, which is a reference

to another object of class Node. It then reads the field i of the Node object.

jclass cls = GetObjectClass(obj);

jfieldID fid = GetFieldID(cls, "nd", "Node");

jobject obj2 = GetField(obj, fid);

jclass cls2 = GetObjectClass(obj2);

jfieldID fid2 = GetFieldID(cls2, "i", "I");

int x1 = GetIntField(obj, fid2);

The above steps may not always be performed in consecutive steps; caching field

and method IDs for future use is a common optimization. Furthermore, arguments pro-

vided to functions such as GetFieldID may not always be string constants. For better

precision, JATO uses an interprocedural, context-sensitive static analysis to track con-

stants and infer types of Java references [50]. For the above program, it is able to decide
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that there is a read access to obj and there is a read access to obj.nd. To do this, it is

necessary to infer what Java class cls represents and what field ID fid represents.

3.5 Preliminary evaluation

We performed preliminary evaluation on a set of multithreaded JNI programs. Each pro-

gram was analyzed to generate a set of constraints, as presented in Section 3.3. Based on

the closure of the generated constraints, a set of objects were identified to ensure atom-

icity of a native method in these programs. Different locking schemes were evaluated to

examine their performance.

All experiments were carried out on an iMac machine running Mac OS X (version

10.7.4) with Intel core i7 CPU of 4 cores clocked at 2.8GHz and with 8GB memory.

The version of Java is OpenJDK 7. For each experiment, we took the average among

ten runs.

We next summarize the JNI programs we have experimented with. The programs

include: (1) a parallel matrix-multiplication (MM) program, constructed by ourselves; (2)

a Fast-Fourier-Transform (FFT) program, adapted from JTransforms [89] by rewriting

some Java routines in C; (3) the compress program, which is a module that performs

multithreaded file compression provided by the MessAdmin [59] project; (4) the derby

benchmark program is selected from SPECjvm2008 [82] and is a database program.

Both compress and derby are pure Java programs, but they invoke standard Java

classes in java.io and java. util.zip, which contain native methods.

The analysis time and LOC for both Java side and C side on each program are listed
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below. It is observed that majority of the time is spent on Java side analysis, particularly

on Java-side constraint-generation.

Program LOC (Java) Time (Java) LOC (C) Time (C)

MM 275 3.34s 150 10µs

FFT 6,654 8.14s 3,169 0.01s

compress 3,197 27.8s 5,402 0.05s

derby 919,493 81.04s 5,402 0.05s

All programs are benchmarked under the three strategies we described in the previ-

ous section. L-ALL stands for the lock-all approach. L-W stands for the lock-on-write

approach. L-WS stands for the case after applying the lock-on-write and lock-at-write-

site optimizations.

Matrix multiplication. The programs takes in two input matrices, calculates the mul-

tiplication of the two and writes the result in an output matrix. It launches multiple

threads and each thread is responsible for calculating the result of one element of the

output matrix. The calculation of one element is through a native method. In this pro-

gram, three two-dimensional arrays of double crosses the boundary from Java to the

native code.

For this program, JATO identifies that the native method accesses the three cross-

boundary objects. These objects are shared among threads. The input matrices and

their arrays are read-accessed whereas the resulting matrix and its array are read- and

write-accessed.

Fig. 3.5(a) presents the execution times of applying different locking schemes. The

size of the matrices is 500 by 500 with array elements ranging between 0.0 and 1000.0.
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L-WS has the best performance overall.

FFT. The native method of this program takes in an array of double to be trans-

formed and sets the transformed result in an output array. The input array is read-

accessed whereas the output array is write-accessed. The arrays are shared among

threads. Fig. 3.5(b) shows the results of FFT. Similar to the program of matrix mul-

tiplication, L-W improved upon L-ALL, and L-WS performs the best among the three.

compress. This program compresses an input file by dividing the file into smaller

blocks and assigning one block to one thread for compression. The actual compression

is performed in the native side using the zlib C library. JATO identifies that a number

of objects such as Deflater are shared among threads and read/write accessed at the

Java side. One exception is FileInputStream, where it is only read-accessed in

Java but is write-accessed at the native side. In term of the number of locks inserted,

there is little difference between lock-all and lock-on-write.

Fig. 3.5(c) presents the results of compress. The file size is about 700MB and

the block size is 128K. The performance gain of L-W over L-ALL is negligible. We

see there is some minor improvement using L-WS. This is because in the native code,

write-access code regions to the locked objects are typically small.

derby. It is a multithreaded database. Some byte arrays and FileInputStream

objects are passed into the native code. They are read-accessed between threads from

the Java side. On the native side, both kinds of objects are write-accessed.

Fig. 3.5(d) shows the result of running derby. The experiment was run for 240

seconds with 60 seconds warm-up time. The peak ops/min occurs when the number of

89



www.manaraa.com

(a) MM

(b) FFT

(c) compress

(d) derby

Figure 3.5: Execution time of the benchmark programs under different locking

schemes.
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threads is between 8 to 32. We can see that in L-WS approach, the performance gains at

its peak is about 35% over L-ALL.

For compress and derby, we also experimented with the no-lock scheme in

which no locking is inserted in native methods. Although the uninstrumented programs

run successfully, there is no guarantee of native-method atomicity as provided by JATO.

The programs of matrix multiplication and FFT would generate wrong results when no

locks were inserted for native-method atomicity. For the matrix-multiplication program,

even though the native method of each thread calculates and updates only one element

of the output matrix, it is necessary to acquire the lock of the output matrix before oper-

ating on it: native methods use JNI function GetArrayElements to get a pointer to

the output matrix and GetArrayElements may copy the matrix and return a pointer

to the copy [51].

3.6 Summary

JATO is a system that enforces atomicity of native methods in multithreaded JNI pro-

grams. Atomicity enforcement algorithms are generalized to programs developed in

multiple languages by using an inter-language, constraint-based system. JATO takes

care to enforce a small number of locks for efficiency.
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CHAPTER 4

REFERENCE COUNTING IN PYTHON/C PROGRAMS WITH AFFINE

PROGRAM ANALYSIS

4.1 Introduction

The Python programming language has become widely adopted in the software devel-

opment community over the years because of many appealing features of the language

itself and a robust ecosystem [60]. Similar to many other languages, Python provides

a Foreign Function Interface (FFI), called the Python/C interface. The interface allows

Python programs to interoperate with native modules written in C/C++. Through the

interface, Python programs can reuse legacy native libraries written in C/C++ or use

native code to speed up their performance-critical parts. Python provides a comprehen-

sive set of Python/C API functions. Through these functions, native modules can create

Python objects, manipulate objects, raise and handle Python exceptions, and perform

other actions [72].

Another important feature of Python is its memory management. Python allocates

objects on its heap. When objects are no longer in use, Python’s memory manager

garbage collects these objects from the heap. The standard implementation of Python

uses the reference-counting algorithm. The representation of every Python object has a

reference-count field. When Python code is running, the Python runtime automatically

adjusts the reference counts during program execution and maintains the invariant that

an object’s reference count be the same as the number of references to the object. Specif-

ically, the reference count of an object is incremented when there is a new reference to

the object or decremented when a reference disappears. When an object’s reference
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count becomes zero, its space is reclaimed from the heap by the garbage collector.

Native modules incorporated in a Python program, on the other hand, are outside the

control of Python’s garbage collector. When those native modules manipulate Python

objects through the Python/C interface, reference counts are not adjusted automatically

by the Python runtime and it is the native code’s responsibility to adjust reference counts

in a correct way (through Py INCREF and Py DECREF, discussed later). This is an

error-prone process. Incorrect adjustments of reference counts result in classic memory

errors such as memory leaks and use of dangling references.

In this chapter, we describe a system called Pungi, which performs static analysis

to identify reference-counting errors in native C modules of Python programs. Pungi

abstracts a native module to an affine program, which models how reference counts are

changed in the native module. In an affine program, the right-hand side of an assign-

ment can only be an affine expression of the form a0 +Σn
i=1aixi, where ai are constants

and xi are program variables. A previous theoretical study [43] has shown that an affine

program is sufficient to model reference-count changes in the case of shallow alias-

ing (which assumes multi-level references to be non-aliases). That study, however, is

mainly concerned with computational complexity and does not consider many practi-

cal issues, including function calls with parameter passing and references that escape

objects’ scopes. Furthermore, its proposed affine-abstraction step has not been imple-

mented and tested for effectiveness. In fact, its affine-abstraction step is non-intuitive

by requiring reversing the control flow of programs. Moreover, it does not describe how

to analyze the resulting affine program to identify reference-counting errors. More de-

tailed discussion of that work and its comparison with Pungi will be presented when we

discuss the design of Pungi.
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Major contributions of Pungi are described as follows:

• We propose a set of ideas that make the affine-abstraction step more complete

and practical. In particular, we show how to perform affine abstraction interpro-

cedurally and how to accommodate escaping references. We further show that

the affine-abstraction step can be simplified by first performing a Static-Single

Assignment (SSA) transform on the input program.

• We propose to use path-sensitive, interprocedural static analysis on the resulting

affine programs to report possible reference-counting errors. We show this step is

precise and efficient.

• We have built a practical reference-count analysis system that analyzes Python/C

extension modules. Our system over 150 errors in 13 benchmark programs, with

a modest false-positive rate of 22%.

The main limitation of Pungi is the assumption of shallow aliasing, which allows

direct references to be aliases but multi-level references are assumed to reference dis-

tinct objects. For instance, if a Python program has a reference to a list object, then all

objects within the list are assumed to be distinct objects. Pungi’s assumption of shallow

aliasing and its other assumptions may cause it to have false positives and false nega-

tives. However, our experience shows that Pungi remains an effective tool given that it

can find many reference-counting errors and its false-positive rate is moderate.

The rest of this chapter is structured as follows. Section 4.2 includes the background

information about the Python/C interface and reference counting. In Section 4.3, we

provide an overview of Pungi. The detailed design of Pungi is presented in Section 4.4

and 4.5. Pungi’s implementation and a summary of its limitations are in Section 4.6.
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1 static PyObject* create_ntuple(PyObject *self,
2 PyObject *args) {
3 int n, i, err;
4 PyObject *tup = NULL;
5 PyObject *item = NULL;
6 // parse args to get input number n
7 if (!PyArg_Parse(args, "(i)", &n)) return NULL;
8 tup = PyTuple_New(n);
9 if (tup == NULL) return NULL;

10 for (i=0; i<n; i++) {
11 item = PyInt_FromLong(i);
12 if (item == NULL) {Py_DECREF(tup); return NULL;}
13
14 err = PyTuple_SetItem(tup, i, item);
15 if (err) { // no need to dec-ref item
16 Py_DECREF(tup); return NULL;}
17 }
18 return tup;
19 }

Figure 4.1: An example Python/C extension module called ntuple (its registra-

tion table and module initializer code are omitted).

Experimental results are discussed in Section 4.7. We summarize on this chapter in

Section 4.8.

4.2 Background: the Python/C interface and reference counting

The Python/C interface allows a Python program to incorporate a native library by de-

veloping a native extension module. The extension module provides a set of native func-

tions. Some of the native functions are registered to be entry native functions, which can

be imported and directly called by Python code; the rest are helper functions. An entry

native function takes Python objects as input, uses Python/C API functions to create/-

manipulate objects, and possibly returns a Python object as the result.

Fig. 4.1 presents a simple C extension module called ntuple. It implements
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one function create ntuple, which takes an integer n and constructs a tuple

(0,1,...,n-1). In more detail, references to Python objects have type “PyObject

*”.1 Parameter args at line 2 is a list object, which contains the list of objects passed

from Python. The call to the API function PyArg Parse at line 7 decodes args and

puts the result into integer n; format string “(i)” specifies that there should be exactly

one argument, which must be an integer object. API function PyTuple New creates

a tuple with size n. The loop from line 10 to line 17 first creates an integer object us-

ing PyInt FromLong and updates the tuple with the integer object at the appropriate

index. For brevity, we have omitted the extension module’s code for registering entry

native functions and for initialization.

After the ntuple extension module is compiled to a dynamically linked library, it

can be imported and used in Python, as shown below.

>>> import ntuple
>>> ntuple.create_ntuple(5)
(0, 1, 2, 3, 4)

4.2.1 Python/C reference counting and its complexities

As mentioned, native extension modules are outside the reach of Python’s garbage col-

lector. Native code must explicitly increment and decrement reference counts (we ab-

breviate reference counts as refcounts hereafter). Specifically,

• Py INCREF(p) increments the refcount of the object referenced by p.

1The Python/C interface defines type PyObject and a set of subtypes that can be used by extension

code, such as PyIntObject and PyStringObject. Pungi does not distinguish these types in its

analysis and treats them as synonyms. Therefore, we will just use PyObject in the rest of the chapter.

96



www.manaraa.com

• Py DECREF(p) decrements the refcount of the object referenced by p. When

the refcount becomes zero, the object’s space is reclaimed and the refcounts of all

objects whose references are in object p get decremented.

Correct accounting of refcounts of objects, however, is a complex task. We next

discuss the major complexities.

Control flow. Correct reference counting must be performed in all control flow paths,

including those paths resulting from error conditions or interprocedural control flows.

Take code in Fig. 4.1 as an example. At line 11, an integer object is allocated, but the

allocation may fail. In the failure case, the code returns immediately, but it is also impor-

tant to perform Py DECREF on the previously allocated tup object; forgetting it would

cause a memory leak. Similarly, at line 16, a Py DECREF(tup) is necessary. Clearly,

taking care of reference counts of all objects in all control-flow paths is a daunting task

for programmers.

Borrowed and stolen references. It is common in native code to use the concept of

borrowed references to save some reference-counting work. According to the Python/C

manual [72], when creating a new reference to an object in a variable, “if we know

that there is at least one other references to the object that lives at least as long as our

variable, there is no need to increment the reference count temporarily”.

For instance, if function foo calls bar and passes bar a reference to an object:

void foo () {

PyObject *p = PyInt_FromLong (...);

bar (p); }
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void bar (PyObject *q) { ... }

Within the scope of bar, there is one more reference (namely, q) to the object

allocated in foo. However, it is safe not to increment the refcount of the object inside

bar. The reason is that, when the control is within bar, we know there is at least one

more reference in the caller and that reference outlives local reference q. Therefore, it is

safe to allow more references than the refcount of the object. In this situation, the callee

“borrows” the reference from the caller, meaning that the callee creates a new reference

without incrementing the refcount.

Moreover, certain Python/C API functions allow callers of those functions to borrow

references. For instance, PyList GetItem returns a reference to an item in a list.

Even though it returns a new reference to the list item, PyList GetItem does not

increment the refcount of the list item. This is safe when the list is not mutated before

the new reference is out of scope; in this case, the reference stored in the list will outlive

the new reference.2 The Python/C reference manual lists the set of API functions with

this behavior.

Dual to the situation that callers may borrow references from some API func-

tions, certain API functions can “steal” references from the callers. For instance,

in a call PyTuple SetItem(tuple,i,item), if tuple[i] contains an ob-

ject, the object’s refcount is decremented; then tuple[i] is set to item. Crit-

ically, item’s refcount is not incremented even though a new reference is cre-

ated in the tuple. This practice is safe if we assume the item reference is

never used after the set-item operation, which is often the case. Another be-

havior is that PyTuple SetItem(tuple,i,item) may fail, in which case

2If the list may be mutated, then the caller should increment the refcount of the retrieved object after

calling PyList GetItem.
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Py DECREF(item) is automatically performed by the API function. This is why at

line 16 in Fig. 4.1 there is no need to decrement the refcount on item.

API reference-count semantics. We have already alluded to the fact that Python/C

API functions may have different effects on the refcounts of involved objects. Certain

functions borrow references and certain functions steal references. Certain functions

allocate objects. For instance, the calls to PyTuple New and PyInt FromLong in

Fig. 4.1 allocate objects and set the refcounts of those objects to be one when allocation

succeeds. And certain functions do not affect the refcounts of objects. When program-

mers use those API functions, they can often be confused by their effects on refcounts

and make mistakes.

All of the above factors make correct reference counting in native code extremely diffi-

cult. As a result, reference-counting errors are common in Python/C native extensions.

4.3 Pungi overview

Fig. 4.2 shows the main steps in Pungi. It takes a Python/C extension module as input

and reports reference-counting errors. Pungi analyzes only C code, but does not analyze

Python code that invokes the C code.

The first step performed by Pungi is to separate interface code from library code

in the extension module. As observed by a previous static-analysis system on the Java

Native Interface [50], code in an FFI package can be divided into interface and library

code. The library code is part of the package that belongs to a common native library.

The interface code glues the host language such as Python with the native library. A
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Figure 4.2: An overview of Pungi.

native function is part of the interface code if 1) it invokes a Python/C API function, or

2) it invokes another native function that is part of the interface code. For example, the

PyCrypto package has a thin layer of interface code that links Python with the underlying

cryptography library. Typically, the size of interface code is much smaller than the

size of library code. Therefore, Pungi performs a static analysis to separate interface

code and library code so that the following steps can ignore the library code. Pungi

implements a simple worklist algorithm to find functions in the interface code. If a

native function does not belong to the interface code, then its execution should not have

any effect on Python objects’ refcounts.

After separation, affine abstraction converts the interface code to an affine program.

The conversion is performed in two steps: Static Single Assignment (SSA) transform

and affine translation. First, the SSA transform is applied on the interface code. The

SSA transform makes the following affine-translation step easier to formulate; each

variable is assigned only once, making it easy to track the association between variables

and Python objects. In affine translation, the interface code in the SSA form is translated

into an affine program. In the affine program, variables are used to track properties of

Python objects, such as their refcounts. Statements are affine operations that model
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how properties such as refcounts are changed in the interface code. Assertions about

refcounts are also inserted into affine programs; assertion failures suggest reference-

counting errors. Details of the process of affine abstraction are presented in Section 4.4.

After affine abstraction, Pungi performs an interprocedural and path-sensitive analy-

sis that analyzes the affine program and statically checks whether assertions in the affine

program hold. If an assertion might fail, a warning about a possible reference-counting

error is reported. Details of affine analysis are presented in Section 4.5.

4.4 Affine abstraction

For better understanding, we describe Pungi’s affine abstraction in two stages. We will

first present its design with the assumption that object references do not escape their

scopes. We will then relax this assumption and generalize the design to allow escaping

object references (e.g., via return values or via a memory write to a heap data structure).

4.4.1 Bug definition with non-escaping references

One natural definition of a reference-counting error is as follows: at a program location,

there is an error if the refcount of an object is not the same as the number of references

to the object. However, this bug definition is too precise and an analysis based on the

definition would generate too many false positives in real Python/C extension modules.

This is due to the presence of borrowed and stolen references we discussed. In both

cases, it is safe to make the refcount be different from the number of actual references.
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Pungi’s reference-counting bug definition is based on a notion of object scopes and

the intuition that the expected refcount change of an object should be zero at the end of

the object’s scope (when references to the object do not escape its scope). To define an

object’s scope, we distinguish two kinds of objects:

• An object is a Natively Created (NC) object if it is created in a Python/C extension

module. In Fig. 4.1, objects referenced by tup and item are NC objects. An NC

object’s scope is defined to be the immediate scope surrounding the object’s cre-

ation site. For instance, the scope of the object referenced by tup is the function

scope of create ntuple.

• An object is a Python Created (PC) object when its reference is passed from

Python to an entry native function through parameter passing. Note that we call

objects whose references are passed to a native function parameter objects, but

those parameter objects are PC objects only if that native function is an entry

function. In Fig. 4.1, the self and args objects are PC objects. We define the

scope of a PC object to be the function scope of the entry native function that

receives the reference to the PC object because Pungi analyzes only native code,

Definition 4 In the case of non-escaping object references, there is a reference-counting

error if, at the end of the scope of an NC or PC object, its refcount change is non-zero.

If the change is greater than zero, we call it an error of reference over-counting. If the

change is less than zero, we call it an error of reference under-counting.

We next justify the bug definition. In the discussion, we use rc to stand for the

refcount change of an object. Suppose the object is an NC object. If rc > 0, it re-

sults in a memory leak at the end of the scope because (1) the refcount remains positive
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1 void buggy_foo () {
2 PyObject * pyo = PyInt_FromLong(10);
3 if (pyo == NULL) return;
4 return;
5 }

Figure 4.3: A contrived example of a buggy Python/C function.

and (2) the number of references to the object becomes zero (as object references do

not escape the scope). Take the contrived code in Fig. 4.3 as an example. The ob-

ject creation at line 2 may result in two cases. In the failure case, the object is not

created and PyInt FromLong returns NULL. In the successful case, the object is cre-

ated with refcount one; in this case, the net refcount change to the object is one be-

fore returning, signaling a reference over-counting error. The correct code should have

Py DECREF(pyo) before line 4.

If rc < 0 for an NC object, then there is a use of a dangling reference because at

some point of the native function execution, the refcount of the object becomes zero

and the object is deallocated as a result; the next Py DECREF dereferences the dangling

reference.

Suppose the object is a PC object of an entry native function. We can safely assume

at the beginning of the function the object’s refcount is the same as the number of ref-

erences to the object because the object is passed from Python, whose runtime manages

refcounts automatically. If rc > 0 at the end of the entry native function, then after the

execution of the function the object’s refcount must be greater than the number of refer-

ences to the object (because object references do not escape). This leads to a potential

memory leak. If rc < 0, this leads to a dangling reference when the native function is

invoked with an object whose refcount is one. Since Pungi analyzes only native code,

not Python code; it has to be conservative.
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One limitation of the bug definition is that it misses some dangling-reference errors

that happen in the middle of native functions. For example, a native function can first

decrement the refcount of a PC object and then increment the refcount. Although at

the end the refcount change is zero, the object gets deallocated after the decrement

if the object’s original refcount is one; the following increment would use a dangling

reference. This is a limitation of Pungi and we leave it to future work.

4.4.2 SSA transform

Inspired by a previous theoretical study, Pungi uses an affine program to model how

refcounts are changed in the interface code of a Python/C extension module. The previ-

ous study, however, requires reversing the control-flow graph: the changes at a program

location are computed based on changes that follow the location in the control-flow

graph (meaning that changes for program locations later in the control-flow graph have

to be computed first). The resulting affine program’s control flow reverses the control

flow of the original program. This process is non-intuitive and it is also unclear how to

generalize it to cover function calls with parameter passing.

We observe that the fundamental reason why reversing the control-flow graph is

necessary is that variables may be assigned multiple times to reference different objects.

Based on this observation, Pungi simplifies the affine abstraction step by first applying

the Static Single Assignment (SSA) transform to the interface code. The SSA transform

inserts φ nodes into the program at control-flow join points and renames variables so

that they are statically assigned only once. As we will show, the benefit is that Pungi

does not need to reverse the control-flow graph when performing the affine-translation

step; further, we can also generalize the affine translation to cover function calls with
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parameter passing.

Pungi’s SSA transform performs transformation on only variables of type

“PyObject *” because only Python objects are of interests to Pungi. Variables of

other types are not SSA transformed. For the example in Fig. 4.1, variable i is not SSA

transformed even though it is statically assigned twice. On the other hand, the item

variable is initialized at the beginning of the code and assigned in the loop. Therefore,

one φ node is inserted before the conditional test i < n and the item variable is split to

multiple ones. The critical parts of the control-flow graph after the SSA transform are

visualized in Fig. 4.4

item2=φ(item, item1)

item

i<n
N

item1=PyInt FromLong(i)

Y

...

item1

Figure 4.4: Part of the control-flow graph for the code in Fig. 4.1 after SSA.
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4.4.3 Affine translation

The affine-translation step translates C interface code in the SSA form to an affine pro-

gram that models the refcount changes of Python objects. We next explain the intuition

behind the translation, before presenting the translation algorithm.

Intuition about the affine translation. Let us assume a function takes n input ref-

erences: p1, p2, ..., pn, each of which is a reference to some Python object. Shallow

aliasing allows some of these references to be aliases. For instance, p1 and p2 may refer-

ence the same object, in which case the refcount of the object can be changed via either

p1 or p2.

With the assumption of shallow aliasing, Lal and Ramalingam [43] proved the fol-

lowing key properties:

(i) the refcount change to an object is the sum of the amount of changes made via

references in p1, p2, ..., pn that point to the object.

(ii) the refcount change to an object via a reference is independent from the initial

aliasing situation and therefore can be computed assuming an initial aliasing situ-

ation in which p1, p2, ..., pn are non-aliases.

We next illustrate via an example as follows:

p3 = p1;

Py_INCREF(p1);

Py_DECREF(p3);

Py_INCREF(p1);

106



www.manaraa.com

Py_DECREF(p2);

Let us first assume p1, p2, and p3 reference distinct objects initially. Let rci be the

refcount change made by the program to the object that pi initially points to. Since it

is a simple program, we can easily see that rc1 = 1, rc2 = −1, rc3 = 0. The reason

why rc3 is zero is because p3 is updated to be p1 in the first statement; so there is no

refcount change to the object that p3 initially references.

Now suppose the program is actually run in an initial aliasing situation where p1

and p2 are aliases referencing object a and p3 references a different object b. In this

case, according to the stated properties (i) and (ii), we can compute that the refcount

change to object a is rc1+ rc2, which is zero, and the refcount change to object b is rc3,

which is also zero.

The follow-up question is how to compute rci for an arbitrary program. The compu-

tation is modeled by an affine program, which is discussed next.

Affine program syntax. The syntax of our affine programs is presented in Fig. 4.5. In

the syntax, we use meta-symbol x for variables and i for integer constants. An affine

program consists of a set of mutually recursive functions; we assume the first function

is the main function. A function declaration contains a name and a body. The body con-

tains the declaration of a list of local variables and a block, which is a list of statements.

A statement in an affine program contains various forms of assignments, of which

the right-hand sides are affine expressions. The condition c in an if-statement or a while-

statement can be either a predicate, which compares a variable to a constant, or a ques-

tion mark. The question mark introduces non-determinism into an affine program and

is used when translating an if-statement or a while-statement with complex conditions
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(Program) Prog : : = f1; f2; ...; fn
(Function) f : : = fname(){locals x1, ..., xk; b}

(Block) b : : = s1; ...; sn
(Statement) s : : = x = i | x = x+ i | x = x+ y

| if c then {b1} else {b2} | while c do {b} | assert p
| (x1, ..., xn) = fname() | return (x1, ..., xn)

(Condition) c : : = p | ?
(Predicate) p : : = x == i | x 6= i | x > i | x < i | x ≥ i | x ≤ i

Figure 4.5: Syntax of affine programs.

in C code. The statement “assert p” makes an assertion about predicate p. During

affine translation, the translator inserts assertions about objects’ refcount changes into

the affine program.

There are also function-call and function-return statements. An affine function takes

zero parameters and returns a tuple. As we will discuss, a native C function with n

object-reference parameters is translated to an affine function that has zero parameters

and returns a tuple with n components, which are the refcount changes of the n param-

eter objects.

Intraprocedural affine translation. The translation from C interface code into an affine

program is syntax directed, translating one function at a time. We next explain how

Pungi translates a C function.

Suppose the C function takes n parameters p1, ..., pn, each of which is a reference to

a Python object. We assume unique numeric labels have been given to parameter objects

and object creation sites in the C function. Assume there are m labels in total, ranging

from 1 to m. Among those labels, the first n labels are given to the n parameter objects

and the rest to objects created in the function.
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C construct map updates affine translation
function entry forall i ∈ [1..n] forall i ∈ [1..m] rci = 0

map(pi) = i
x = y map(x) = map(y) none
Py INCREF(x) rcmap(x) ++
Py DECREF(x) rcmap(x) −−
x = PyInt FromLongl(. . . ) map(x) = l if ?

then { rcl = 1; on l = 1 }
else { rcl = 0; on l = 0 }

if (x == NULL) if onmap(x) == 0
then s1 else s2 then { T (s1) }

else { T (s2) }
return forall i ∈ OutScope([1..m])

assert (rci == 0)
return (rc1, . . . , rcn)

f(x1, . . . , xk) (tmp1, . . . , tmpk) = f();
rcmap(x1) += tmp1; . . . ;
rcmap(xk) += tmpk;

Figure 4.6: Affine translation T (−) for typical C constructs.

There are two important aspects about the affine translation. First, the translation

maintains a variable-object map that maps from C variables to object labels; it tracks

which object a C variable references at a program location. Second, for a Python object

with label i, the affine program after translation uses a set of affine variables to track

properties of the object. The most important one is the rci variable, which tracks the

refcount change to the object. (Other affine variables will be described later.)

Fig. 4.6 presents the translation rules for typical C constructs. The first column of

the table presents a C construct, the second column presents the updates to the variable-

object map, and the last column contains the translation result.

At the function entry, the variable-object map is initialized to map from parameters

to labels of parameter objects. Recall that with shallow aliasing the refcount change to an

object is independent from the initial aliasing situation; this is why initially parameters

are mapped to unique labels, essentially assuming they are non-aliases. In terms of
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translation for the function entry, refcount changes for all objects are initialized to be

zero.

Reference assignment x = y results in an update to the variable-object map: af-

terwards, x references the same object as y. Py INCREF(x) is translated to an affine

statement that increments the rc variable of the object that x currently references. We

use “rci++” as an abbreviation for rci = rci+1. Similarly, Py DECREF(x) is translated

to a decrement on the corresponding rc variable.

The translation also translates Python/C API function calls. Such a translation re-

quired us to carefully read the Python/C reference manual about the refcount effects of

API functions (and sometimes even required us to read the source code of the Python in-

terpreter when the manual is unclear). One complication when translating API functions

is the need to deal with error conditions, which are common in the Python/C interface.

In the example in Fig. 4.3 on page 103, PyInt FromLong is supposed to allocate an

integer object, but the allocation may fail. The subsequent code tests whether the ob-

ject is null and proceeds with two cases. Error conditions are typically signaled in the

Python/C interface by returning a null reference. To deal with error conditions, Pungi

introduces another affine variable for an object during translation: an object non-null

variable, called the on variable. It is one when the object is non-null and zero when

the object is null. Fig. 4.6 presents the translation of PyInt FromLong with object

label l. It is translated into a non-deterministic if-statement. In the case of an allocation

success, the rc variable is set to be one and the on variable is also one (meaning it is

non-null); in the failure case, both variables are set to be zero.

Pungi translates an if-statement in C code in a heuristic way. It recognizes a set

of boolean conditions (testing for null, testing for nonnull, etc.) in the if-statement
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buggy_foo () {
locals rc1, on1;
rc1 = 0;
if (?) {rc1 = 1; on1 = 1} else {rc1 = 0; on1 = 0};
if (on1 == 0) { assert (rc1 == 0); return ();}
assert (rc1 == 0); return ();

}

Figure 4.7: Translation of the example in Fig. 4.3.

and translates those conditions accurately. Fig. 4.6 presents one such case when the

condition is to test whether an object reference is null; the translated code tests the cor-

responding object’s on variable. For complex boolean conditions, Pungi just translates

them to question marks.

A return statement is translated to assertions about object refcount changes followed

by the returning of a tuple of refcount changes of the parameter objects. We delay the

discussion why the tuple of refcount changes is returned when we discuss the interpro-

cedural translation. An assertion is inserted for every object that is about to go outside

its scope. This is according to the bug definition we discussed in Section 4.4.1. The aux-

iliary OutScope function returns a set of labels whose corresponding objects are about

to go outside their scopes. NC (Natively Created) objects created in the function being

translated belong to this set. Parameter objects are also in this set if the function is an

entry native function; that is, when they are PC (Python Created) objects.

We present in Fig. 4.7 the translation result for the function in Fig. 4.3. Since the

original function takes no parameters, the resulting affine function returns an empty

tuple. From the affine function, we can see that the last assertion fails, which implies a

reference-counting error in the original function.

We note that the SSA transform makes the presented affine-translation possible.
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Without the SSA, the variable-object map would possibly be updated differently in two

different branches of a control-flow graph; then the translation would face the issue of

how to merge two maps at a control-flow join point. After the SSA transform, an object-

reference variable is statically assigned once and conflicts in variable-object maps never

arise. The previous study [43] addressed the issue of variables being assigned multiple

times by reversing the control flow during the affine translation. By performing the SSA

transform first, Pungi simplifies the affine translation in the intraprocedural case and

allows function calls that pass parameters.

Interprocedural translation. As we have seen, the affine function translated from a

native function returns the refcount changes of parameter objects by assuming those pa-

rameter objects are distinct. This assumption, however, may not be true as the native

function may be called with aliases and different call sites may have different aliasing

situations. Fortunately, because of property (ii) in Section 4.4.3 (on page 106), it is pos-

sible to make post-function-call refcount adjustments according to the aliasing situation

of a specific call site. The last entry in Fig. 4.6 describes how a function call is trans-

lated. First, the corresponding function is invoked and it returns the refcount changes of

the parameter objects assuming they are distinct. After the function call, the rc variables

of the parameter objects are adjusted according to the variable-object map of the caller.

Fig. 4.8 presents an example. Fig. 4.8(a) is some Python/C interface code, which has

two functions. Function foo is assumed to be a native entry function. It invokes bar

at two places. Fig. 4.8(b) is the translated affine program. Note that the post-function

refcount adjustments are different for the two call sites. For the first call f(x1,x1), the

two refcounts are both added to rc1; for the second call f(x2,x2), the two refcounts

are both added to rc2.
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void foo (PyObject *x1, PyObject *x2) {

if (...) bar(x1, x1) else bar(x2, x2);

return; }

void bar (PyObject *p1, PyObject *p2) {

Py_IncRef(p1); Py_DecRef(p2); }

(a) Untransformed Python/C interface code

void foo () {

locals rc1, on1, rc2, on2, tmp1, tmp2;

rc1 = 0; rc2 = 0;

if (?) {

(tmp1, tmp2) = bar();

rc1 += tmp1; rc1 += tmp2;

} else {

(tmp1, tmp2) = bar();

rc2 += tmp1; rc2 += tmp2;}

assert (rc1 == 0); assert (rc2 == 0);

return (); }

bar () {

locals rc1, on1, rc2, on2;

rc1 = 0; rc2 = 0; rc1++; rc2--;

return (rc1, rc2); }

(b) Transformed affine program

Figure 4.8: An example of interprocedural affine translation.
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Another note about the interprocedural translation is that, if the SSA form of a native

function has φ nodes, then the native function is translated to multiple affine functions

with one affine function created for one φ node. In particular, for a φ node, the trans-

lation finds the set of nodes in the control-flow graph that are dominated by the φ node

and are reachable from the φ node without going through other φ nodes. This set of

nodes is then translated to become the body of the affine function created for the φ node.

Afterwards, the affine function is lifted to be a function at the global scope (that is,

lambda-lifting [37]). As an example, Pungi translates the following function to exactly

the same affine program in Fig. 4.8(b). This is because after the SSA transform, there

is a φ node inserted before line 4 and an additional affine function is created for that φ

node.

1 void foo (PyObject *x1, PyObject *x2) {

2 PyObject *p1, *p2;

3 if (...) {p1=x1; p2=x1} else {p1=x2; p2=x2};

4 Py_IncRef(p1); Py_DecRef(p2);

5 return;

6 }

For the ntuple program in Fig. 4.1, since a φ node is inserted before the testing for

loop condition (see Fig. 4.4), an affine function is created for the loop body; it makes a

recursive call to itself because there is a control-flow edge back to the φ node because

of the loop.
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4.4.4 Escaping references

References to an object may escape the object’s scope. In this case, the expected ref-

count change to the object is greater than zero. Object references may escape in several

ways. A reference may escape via the return value of a function. Fig. 4.9(a) presents

such an example. When the integer object is successfully created, the function returns

the pyo reference. In this case, the refcount change to the integer object is one. A ref-

erence may also escape to the heap. The code in Fig. 4.1 on page 95 contains such an

example. At line 14, The item reference escapes to the heap in the tuple object when

the set-item operation succeeds. In that case, the refcount change to the object created

at line 11 is also one.

To deal with escaping references, we revise the bug definition as follows:

Definition 5 There is a reference-counting error if, at the end of the scope of an NC or

PC object, its refcount change is not the same as the number of times references to the

object escape. If the refcount change is greater than the number of escapes, we call it

an error of reference over-counting. If the change is less than the number of escapes,

we call it an error of reference under-counting.

The previous bug definition with non-escaping references is a specialization of the new

definition when the number of escapes is zero. The new definition essentially uses the

number of escapes to approximate the number of new references created outside the

object’s scope. One limitation is that an object reference may escape to the same heap

location multiple times and a later escape may overwrite the references created in earlier

escapes. This would result in missed errors, although this happens rarely in practice as

suggested by our experience with real Python/C extension modules.
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PyObject* foo () {

PyObject *pyo=PyInt_FromLong(10);

if (pyo==NULL) {

return NULL;

}

return pyo;

}

(a) Untransformed Python/C interface code

foo () {

locals rc1,ev1,on1;

rc1=0; ev1=0;

if (?) {rc1=1; on1=1}

else {rc1=0; on1=0};

if (on1==0) {

assert (rc1==ev1);

return;

}

if (on1==1) ev1++;

assert (rc1==ev1);

return (rc1,ev1);

}

(b) Transformed affine program

Figure 4.9: An example of escaping references.
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Given the new bug definition, the affine-translation step is adjusted in the following

ways. First, an escape variable, ev , is introduced for each Python object and records

the number of escapes. It is initialized to be zero at the beginning of a function. Second,

the translator recognizes places where an object’s references escape and increments the

object’s escape variable in the affine program by one. Third, assertions are changed

to assert an objects’ refcount change be the same as the number of escapes. Finally, a

function not only returns the refcount changes of its parameter objects, but also returns

the numbers of escapes of the parameter objects. The post-function-call adjustments

adjust both the refcount changes and the numbers of escapes of the arguments.

Fig. 4.9(b) presents the translated result of the code in Fig. 4.9(a). Variable ev1 is

introduced to record the number of escapes for the integer object created. This example

also illustrates that the number of escapes may be different on different control-flow

paths.

One final note is that in Pungi, with the assumption of shallow aliasing, callers of

functions that return a reference are assumed to get a reference to a new object. That is,

a function call that returns a reference is treated as an object-creation site.

4.5 Affine analysis and bug reporting

The final step of Pungi is to perform analysis on the generated affine program and re-

ports possible reference-counting errors. There are several possible analysis algorithms

on affine programs, such as random interpretation [27]. Pungi adapts the ESP algo-

rithm [17] to perform affine analysis. The major reason for choosing ESP is that it is

both path-sensitive and interprocedural. The analysis has to be path sensitive to rule
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out impossible paths. The affine program in Fig. 4.9(b) shows a typical example. In the

statement “if (on1==0) ...”, the analysis must be able to remember the path con-

dition on1==0 to rule out the impossible case where rc1==1 and on1==1. Without

that capability, the analysis would not be able to see that the first assertion always holds.

The analysis also must be interprocedural as the affine program in Fig. 4.8 illustrates.

ESP symbolically evaluates the program being analyzed, tracks and updates sym-

bolic states. At every program location, it infers a set of possible symbolic states of the

following form:

{ 〈ps1, es1〉, . . . , 〈psn, esn〉 }

In ESP, a symbolic state consists of a property state ps and an execution state es . The

important thing about the split between property and execution states is that ESP is de-

signed so that it is path- and context-sensitive only to the property states. Specifically,

at a control-flow join point, symbolic states merge based on the property state; the ex-

ecution states of all states that have the same property state are merged. By splitting

property and execution states in different ways, we can control the tradeoff between

efficiency and precision of the algorithm.

A particular analysis needs to decide how to split between property and execution

states in ESP. We next discuss how they are defined in Pungi but leave the detailed

algorithm to the ESP paper. When analyzing an affine program, Pungi’s property state

is the values of refcount-change variables and escape variables. The execution state is

the values of all other variables.

Fig. 4.10 presents the analysis result at key program locations for the affine program

in Fig. 4.9. As we can see, after the first if-statement, there are two symbolic states,

representing the two branches of the if-statement. Then path sensitivity allows the anal-
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foo () {
locals rc1,ev1,on1;
rc1=0; ev1=0;
// {<[rc1=0,ev1=0], []>}
if (?) {
rc1=1; on1=1
// {<[rc1=1,ev1=0], [on1=1]>}

} else {
rc1=0; on1=0
// {<[rc1=0,ev1=0], [on1=0]>}

};
// {<[rc1=1,ev1=0], [on1=1]>, <[rc1=0,ev1=0], [on1=0]>}
if (on1==0) {
// {<[rc1=0,ev1=0], [on1=0]>}
assert (rc1==ev1);
return;

}
// {<[rc1=1,ev1=0], [on1=1]>}
if (on1==1) ev1++;
// {<[rc1=1,ev1=1], [on1=1]>}
assert (rc1==ev1);
return (rc1,ev1);

}

Figure 4.10: An example of affine analysis.

ysis to eliminate impossible symbolic states after the testing of on1==0 in the second

if-statement.

We note that ESP was originally designed with a finite number of property states,

while values of refcount changes and escapes can be arbitrarily large. In our implemen-

tation, we simply put a limit on those values (10 in our implementation) and used a top

value when they go out of the limit.
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4.6 Implementation and limitations

We have built a prototype implementation of Pungi. The implementation is written

in OCaml within the framework of CIL [65], which is a tool that allows analysis and

transformation of C source code. Pungi’s prototype implementation cannot analyze C++

code because CIL can parse only C code. Passes are inserted into CIL to perform the

separation of interface code from library code, the SSA transform, the affine translation,

and the affine analysis. Our implementation of the SSA transform follows the elegant

algorithm by Aycock and Horspool [6]. The total size of the implementation is around

5,000 lines of OCaml code.

Pungi also needs to identify entry native functions because assertions about param-

eter objects are inserted only to entry functions. Native extensions typically have a

registration table to register entry functions to Python statically. Pungi searches for the

table and extracts information from the table to identify entry functions. Since Python is

a dynamically typed language, a native extension module can also dynamically register

entry functions. Therefore, Pungi also uses some heuristics to recognize entry functions.

In particular, if a function uses PyArg Parse (or several other similar functions) to de-

code arguments, then it is treated as an entry function.

Limitations. Before we present the evaluation results of Pungi, we list its major limi-

tations. We will discuss our plan to address some of these limitations when discussing

future work. Some of these limitations have been discussed before, but we include them

below for completeness.

First, Pungi assumes shallow aliasing. Whenever an object reference is retrieved

from a collection object such as a list, read from a field in a struct, or returned from a
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function call, the reference is assumed to point to a distinct object; such a site is treated

as an object-creation site.

Second, Pungi reports errors assuming Python invokes entry native functions with

distinct objects. This is reflected by the fact that an assertion of the form rc = ev is

inserted for every parameter object of an entry native function. This assumption can be

relaxed straightforwardly and please see discussion in future work.

Third, Pungi’s bug definition may cause it to miss some dangling reference errors in

the middle of functions, because assertions are inserted only at the end of functions.

Finally, a native extension module can call back Python functions through the

Python/C API, resulting in a Ping-Pong behavior between Python and native code. An

accurate analysis of such situations would require analyzing both Python and C code.

On the other hand, we have not encountered such code in our experiments.

4.7 Evaluation

We selected 13 Python/C programs for our evaluation. These programs are common

Python packages in Fedora OS and they use the Python/C interface to invoke the un-

derlying C libraries. Brief descriptions of these benchmark programs are shown in Ta-

ble 1.2. One major reason we selected those programs for evaluation is that a previous

tool, CPyChecker [56], has reported its results on those programs and we wanted to

compare Pungi’s results with CPyChecker’s. All evaluation was run on a Ubuntu 9.10

box with 512MB memory and 2.8GHz CPU.

Table 4.1 lists the selected benchmarks, their sizes in terms of thousands of lines of
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Benchmark Total Interface code Time
(KLOC) (KLOC) (s)

krbV 7.0 3.7 0.78
pycrypto 16.6 7.0 1.32
pyxattr 1.0 1.0 0.09
rrdtool 31.4 0.6 0.01
dbus 93.1 7.0 0.66
gst 2.7 1.8 0.03
canto 0.3 0.2 0.001
duplicity 0.5 0.4 0.001
netifaces 1.1 1.0 0.09
pyaudio 2.9 2.7 0.03
pyOpenSSL 9.6 9.3 1.27
ldap 3.8 3.4 0.23
yum 3.0 2.4 0.20
TOTAL 173 40.5 4.7

Table 4.1: Statistics about selected benchmark programs.

code (KLOC), sizes of their interface code (recall that the first step Pungi performs is to

separate interface from library code), and the amount of time Pungi spent on analyzing

their code for reference-counting errors. The time is an average of ten runs. As we can

see, Pungi is able to analyze a total of 173K lines of code in a few seconds, partly thanks

to the separation between interface and library code.

The main objective in our evaluation is to know how effective our tool is in identi-

fying the reference-counting errors as defined. This includes the number of bugs Pungi

reports, the false positive rate, and the accuracy of our tool compared to CPyChecker.

Errors found

For a benchmark program, Table 4.2 shows the number of warnings issued by Pungi,

the numbers of true reference over- and under-counting errors, and the number of false

positives. For the 13 benchmark programs, Pungi issued a total of 210 warnings, among

which there are 142 true reference over-counting errors and a total of 22 true reference
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Benchmark All Reference Reference False
Warnings Over-counting Under-counting Positives (%)

krbV 85 74 0 11 (13%)
pycrypto 10 6 1 3 (30%)
pyxattr 4 2 0 2 (50%)
rrdtool 0 0 0 0 (0%)
dbus 3 1 0 2 (67%)
gst 30 12 13 5 (17%)
canto 6 0 4 2 (33%)
duplicity 4 2 0 2 (50%)
netifaces 8 2 1 5 (63%)
pyaudio 35 28 2 5 (14%)
pyOpenSSL 9 3 1 5 (56%)
ldap 15 11 0 4 (27%)
yum 1 1 0 0 (0%)
TOTAL 210 142 22 46 (22%)

Table 4.2: All warnings reported by Pungi, which include true reference over- and

under-counting errors and false positives.

under-counting errors. We manually checked all true errors to the best of our ability via

a two-person team. Common errors reported by both CPyChecker and Pungi have been

reported to the developers by the CPyChecker author and some of those errors have been

fixed in later versions of the tested benchmarks. Most of the additional true errors found

by Pungi were easy to confirm manually.

There are 46 false positives and the overall false-positive rate is moderate, about

22%. We investigated those false positives and found most false positives are because

of the following reasons:

• Object references in structs. With the assumption of shallow aliasing, Pungi treats

the assignment of an object reference to a field in a struct as an escape of the

reference, and treats the reading an object reference from a field of a struct as

returning a reference to a new object. For example, in the following code p and q

would reference two distinct objects in Pungi’s analysis.
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f->d = p;

q = f->d;

As a result, Pungi loses precision when tracking refcounts in such cases. This may

cause both false positives and false negatives and it contributes to the majority (22

in total) of all the false positives seen in packages such as pycrypto and ldap.

• Type casting. Pungi treats references of PyObject type (and its subtytpes such

as PyLongObject, PyIntObject, and PyStringObeject) as references

to Python objects. In some package code, a Python object reference is cast into

another type such as an integer and then escapes to the heap. Pungi’s affine trans-

lation cannot model this casting and would incorrectly issue a reference over-

counting warning. 20 false positives in packages such as gst and pyOpenSSL

were caused by this reason.

Comparison with CPyChecker

Table 4.3 shows the comparison of errors found between Pungi and CPyChecker. We

looked into the differences and found that Pungi found all errors reported by CPy-

Checker. In addition, Pungi found 50 more errors than CPyChecker. The reason is

because Pungi employs more precise analysis that applies the SSA and analyzes loops

as well as function calls. CPyChecker’s analysis is intraprocedural and ignores loops.

We categorize the causes in the table. In the column Common, we put the number of

errors that are reported by both Pungi and CPyChecker. Column MA (Multiple Assign-

ments) shows the number of errors that Pungi found but missed by CPyChecker because

CPyChecker’s implementation cannot deal with the case when variables are statically

assigned multiple times with different object references; Pungi can deal with this by the
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Benchmark Pungi CPyChecker
Common MA Proc Loop Errors found

krbV 39 33 1 1 39
pycrypto 6 0 1 0 6
pyxattr 2 0 0 0 2
rrdtool 0 0 0 0 0
dbus 1 0 0 0 1
gst 21 2 0 2 21
canto 4 0 0 0 4
duplicity 2 0 0 0 2
netifaces 3 0 0 0 3
pyaudio 25 3 1 1 25
pyOpenSSL 1 3 0 0 1
ldap 8 3 0 0 8
yum 1 0 0 0 1
TOTAL 112 43 3 4 112

Table 4.3: Comparison of errors found between Pungi and CPyChecker.

SSA transform. Column Proc shows the number of errors Pungi found but missed by

CPyChecker because it cannot perform interprocedural analysis. Column Loop shows

the number of errors Pungi found but missed by CPyChecker because it cannot analyze

loops. The comparison shows that Pungi compares favorably to CPyChecker.

4.8 Summary

We have described Pungi, a static-analysis tool that identifies reference-counting errors

in Python/C extension modules. It translates extension code to an affine program, which

is analyzed for errors of reference counting. Pungi’s affine abstraction is novel in that it

applies the SSA transform to simplify affine translation and in that it can deal with the

interprocedural case and escaping references. The prototype implementation found over

150 bugs in over 170K lines. We believe that Pungi offers an efficient and accurate tool

for statically analyzing code that uses reference counting to manage resources.

125



www.manaraa.com

CHAPTER 5

RELATED WORK

This dissertation work belongs to the general category of improving 1) software quality,

2) software and system engineering, 3) static analysis, and 4) FFIs’ safety, reliability, and

security. In this section, we discuss systems that are closely related to this dissertation.

5.1 FFIs

Almost all widely used programming languages support a Foreign Function Interface

(FFI) for interoperating with program modules developed in low-level code (e.g., [51,

72, 47, 9, 13, 23]). Early work on FFIs were mostly concerned with how to design an

FFI and how to provide efficient implementation.

FFI-based software is often error-prone. In recent years, researchers studied how

to improve upon FFIs’ safety, reliability, and security. FFI-based code is often a rich

source of software errors: a few recent studies reported hundreds of interface bugs in

JNI programs ([26, 40, 49]). Errors occur often in interface code because FFIs generally

provide little or no support for safety checking, and also because writing interface code

requires resolving differences (e.g., memory models and language features) between two

languages. Past work on improving FFIs’ safety can be roughly classified into several

categories: (1) Static analysis has been used to identify specific classes of errors in FFI

code [25, 26, 87, 40, 49]; (2) In another approach, dynamic checks are inserted at the

language boundary and/or in the native code for catching interface errors (see [45]) or for

isolating errors in native code so that they do not affect the host language’s safety [85]

and security [80]; (3) New interface languages are designed to help programmers write
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safer interface code (e.g., [31]). TurboJet takes the static-analysis approach, which is

well-suited for finding bugs in exceptional cases.

5.2 Work related to TurboJet

We next compare our exception analysis work (TurboJet) in more detail with three

closely related work on using static analysis to find bugs in JNI programs [26, 40, 49].

Our previous system [49] and a system by [40] identify situations of mishandling JNI ex-

ceptions in native code. Both systems compute at each program location whether there

is a possible JNI exception pending. However, they do not compute specific classes of

pending exceptions. To do that, TurboJet has to use a much more complicated static

analysis. The analysis tracks information of C variables in native code and correlates

them with exception states; it also takes Java method signatures into account for tracking

exceptions that may be pending when invoking a Java method. Both are necessary for

computing exception effects. J-Saffire [26] identifies type misuses in JNI-based code

but does not compute exception effects for native methods. J-Saffire also finds it neces-

sary to track information of C variables that hold Java references. To deal with context

sensitivity required for analyzing JNI utility functions, J-Saffire performs polymorphic

type inference that is based on semi-unification, while TurboJet uses a context-sensitive

dataflow analysis. Since TurboJet’s context sensitivity uses call strings of length one,

there are cases when J-Saffire’s type inference can infer more precise information than

TurboJet’s. For instance, if a string constant is passed two levels down in a function-call

chain and used as an argument to FindClass, then TurboJet cannot infer the exact

Java type of the resulting reference. In practice, however, we did not find this results in

noticeable imprecision in TurboJet.
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Many systems perform exception analysis for languages that provide built-in support

for exceptions. For example, the Jex tool [74] and others (e.g., [55, 14]) can compute

what kinds of exceptions can reach which program point for Java programs. This infor-

mation is essential for understanding where exceptions are thrown and caught. TurboJet

computes this information for JNI programs

Our system TurboJet employs static taint analysis to track “bad” data in exceptional

situations. Taint analysis, either static (e.g., [54, 38, 91, 5, 92]) or dynamic (e.g., [67,

93, 68]), has been successfully applied to preventing a range of attacks (e.g., format

string attacks [77]). Static taint analysis does not incur runtime overhead as dynamic

analysis does, but may report false errors. A promising hybrid strategy proposed by [15]

performs static taint analysis as much as it can, but leaves difficult cases for dynamic

analysis. One technical difference between our static taint analysis and previous ones is

that it depends on a pointer graph. The pointer graph (described in Section 2.6.1) both

approximates taint propagation and is used to cope with aliases; previous systems [54,

15] have separate taint propagation and pointer-analysis modules.

5.3 Work related to JATO

The benefits of static reasoning of atomicity in programming languages were demon-

strated by Flanagan and Qadeer [24] through a type effect system. Since then, many

static systems have been designed to automatically insert locks to enforce atomicity:

some are type-based [58, 41]; some are based on points-to graphs [30]; some reduce the

problem to an ILP optimization problem [20]. Among them, JATO’s approach is more

related to [41]. Unlike that approach where the focus is on the interaction between lan-

128



www.manaraa.com

guage design and static analysis, JATO focuses on static analysis in a mixed language

setting.

Atomicity can either be implemented via locks (e.g., the related work above) or

by transactional memory (TM) [29]. Related to our work JATO are two concepts ar-

ticulated in TM research: weak atomicity and strong atomicity [57]. In a system that

supports weak atomicity, the execution of an atomic program fragment exhibits serial

behaviors only when interleaving with that of other atomic program fragments; there

is no guarantee when the former interleaves with arbitrary executions. To support the

latter, i.e., strong atomicity, has been a design goal of many later systems (e.g., [12]).

Most existing strong atomicity algorithms would disallow native methods to be invoked

within atomic regions, an unrealistic assumption considering a significant number of

Java libraries are written in native code for example. Should they allow for native meth-

ods but ignore their impact these approaches would revert back to what they were aimed

at solving: weak atomicity.

In a software transactional memory setting where the atomicity region is defined as

atomic blocks, external actions [28] are proposed as a language abstraction to allow

code running within an atomic block to request that a given pre-registered operation

(such as native method invocation) be executed outside the block. In the “atomicity-by-

default” language AME [4], a protected block construct is introduced to allow the

code within the block to opt out of the atomicity region. Native methods are cited as a

motivation for this construct. Overall, these solutions focus on how to faithfully model

the non-atomicity of native methods, not how to support their atomicity.
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5.4 Work related to Pungi

Reference counting is a general approach in tracking the number of references belong

to a object allocated in memory. It is typically used in implementing dynamic garbage

collection and memory management in programming languages and operating systems.

There have been several systems designed and built in finding reference count bugs,

such as [21].

Malcom has constructed a practical tool called CPyChecker [56], which is a gcc

plug-in that can find a variety of errors in Python’s native extension modules, including

reference-counting errors. CPyChecker traverses a finite number of paths in a function

and reports errors on those paths. It does not perform interprocedural analysis and ig-

nores loops, while Pungi covers both. CPyChecker also produces wrong results when

a variable is statically assigned multiple times, while Pungi uses SSA to make vari-

ables assigned only once. Experimental comparison between Pungi and CPyChecker is

presented in the evaluation section.

Emmi et al. have used software model checking to find reference-counting errors in

an OS kernel and a file system [22]. Their system’s focus, assumptions, and techniques

are quite different from Pungi’s. The focus of their system is to find reference-counting

errors in the presence of multiple threads. It assumes there is an array of reference-

counted resources and assumes each resource in the array is used uniformly by a thread.

Therefore, their system can use a technique called temporal case splitting to reduce the

reference-counting verification of multiple resources and multiple threads to the veri-

fication of a single resource and a single thread. In the context of Python/C, however,

objects passed from Python are not used uniformly by native code: an object’s refcount

may be adjusted differently from how other objects’ refcounts are adjusted. Pungi uses
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an affine program to capture the effects of reference counts on objects. Another note is

that the system by Emmi et al. assumes simple code for adjusting refcounts and has not

dealt with any aliasing situation (including shallow aliasing).

Python/C interface code can also be generated by tools such as SWIG [7] and

Cython [1]. They would reduce the number of reference-counting errors as most of

the interface code is automatically generated. However, these tools do not cover all pos-

sible cases of code generation; in particular, they do not handle every feature of C/C++.

As a result, a lot of interface code is still written manually in practice.

The work of Pungi is an example of finding errors in Foreign Function Interface

(FFI) code. Errors occur often in FFI code [26, 87, 40, 49] because writing interface

code requires resolving language differences such as memory management between

two languages. Past work on improving FFIs’ safety can be put into several categories.

First, some systems use dynamic checking to catch errors (e.g., [45]), to enforce atom-

icity [48], or to isolate errors in native code so that they do not affect the host language’s

safety and security [80, 85]. Second, some researchers have designed new interface

languages to help programmers write safer interface code (e.g.,[31]). Finally, static

analysis has been used to identify specific classes of errors in FFI code, including type

errors [25, 26] and exception-handling errors [49, 50]. Pungi belongs to this category

and finds reference-counting errors in Python/C interface code.

Pungi uses affine programs to abstract the reference-counting aspect of Python/C

programs and performs analysis on the resulting affine programs. Affine analysis has

been used in program verification in the past (e.g.,[27, 63, 39, 62, 18]).

Our system Pungi is inspired by the idea presented in [42]. This paper proposes a

technique to perform reference count analysis for the case of shallow pointers, which
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disallows multi-level pointers (e.g., pointers to pointers, or pointers to objects that con-

tains pointers). The property this paper verifies is to check the number of reference

increments is the same as the number of reference decrements in every control-flow

path. This property is suitable for whole-program analysis but wouldn’t be sufficient for

modular analysis, which is needed when we analyze a C function that interoperates with

Python.

Using affine analysis in program verification has also been studied in the past, such

as [27, 64, 39, 62, 18].
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CHAPTER 6

FUTURE WORK

Many interesting problems remain to be solved in improving quality of software com-

posed of FFIs.

As a natural extension to the study of multithreaded safety in an FFI, we can fur-

ther investigate how to ensure locking inserted by JATO does not cause deadlocks (even

though we didn’t encounter such cases during our experiment), probably using the ap-

proach of a global lock order as in Autolocker [58]. Moreover, we believe that JATO’s

approach can be generalized to other FFIs such as the OCaml/C interface [47] and the

Python/C interface [72].

We also plan to generalize Pungi to relax some of its assumptions. Pungi assumes

shallow aliasing and assumes parameter objects to entry native functions are distinct

objects. One possibility is to report errors for any possible aliasing situation, by adding

nondeterminism into native functions. As one example, suppose an entry native func-

tion takes two parameter objects referenced by p1 and p2, respectively. Suppose the

function can be called either with p1 and p2 referencing two distinct objects or with p1

and p2 referencing the same object. We can insert the following code at the beginning

of the native function before translation: “if (?) {p1=p2}”, which nondetermin-

istically initializes p1 and p2 for the two aliasing situations. As another example, after

an object is retrieved from a list, we can nondeterministically assume the object can be a

new object, or any existing object. This approach can be further improved if Python and

C code are analyzed together and some alias analysis is used to eliminate impossible

aliasing situations. Another possible approach to relax the shallow aliasing assumption

is to keep and maintain a set of finite access paths to each Python object, as suggested
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in [76].

Exploring beyond using static analysis alone is another promising direction. Besides

static analysis, dynamic analysis and even hybrid analysis that combines both static

analysis and dynamic analysis can be considered for finding bugs in software composed

of FFIs. For example, in taint analysis, there are several studies that use static analysis

to target the most possible taint targets and taint sinks, while using dynamic analysis to

find the possible taint path, which can be quite efficient. The combination of using static

analysis and dynamic analysis is a common practice in the real world. Programmer

commonly use static analysis tools, such as FindBugs [32], to find some bugs. They

then use unit tests (i.e., a form of dynamic analysis) to find other types of bugs that the

static analysis tools cannot find. We believe systems that are designed with a hybrid

approach can be more powerful and comprehensive in solving software quality issues.

In our study, we focus on using static analysis exclusively on program source code.

Another possible approach is to apply static analysis on program binary code. Static

analysis of software source code needs to consider lots of language-specific features,

such as referencing a C struct’s field (as discussed in Section 2.7.1). Static analysis of

binary code in general does not face this problem. It can potentially offer language-

agnostic solutions hence more flexible solutions to some of the problems we have ex-

plored in this dissertation. However, the study of static analysis in binary code is still in

its early stage; there are many basic problems to be resolved and issues to be addressed.

These include complexity of binary code, lack of high-level semantics, and code ob-

fuscation [81]. These challenges at the same time make application of static analysis

in binary code both an interesting research topic and a potentially rewarding research

venture.
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CHAPTER 7

CONCLUDING REMARKS

Foreign Function Interfaces (FFIs) bring convenience and efficiency to software devel-

opment, but at the same time can introduce software quality issues.

In this dissertation, we use two FFIs – the Java Native Interface (JNI) and the

Python/C interface – to show bug definitions and examples of bug patterns that can

cause software quality issues. We present complete bug finding systems that are built

with static analysis. In the process, we propose improvements of several static analyses

and demonstrate that our novel designs of finding bugs are effective and efficient. Our

systems have found a number of real bugs in popular FFI software applications. With

these research findings and proposed solutions, we are making a solid step toward better

software quality with FFI code. We believe that the techniques presented in this disser-

tation are applicable to other environments such as Objective-C, OCaml, and .NET.
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APPENDIX A

WHITELIST

• A list of JNI functions that are safe to call with a pending exception (specified in

the JNI Manual [51]):

ExceptionOccurred,

ExceptionDescribe,

ExceptionClear,

ExceptionCheck,

ReleaseStringChars,

ReleaseStringUTFchars,

ReleaseStringCritical,

Release〈Type〉ArrayElements,

ReleasePrimitiveArrayCritical,

DeleteLocalRef,

DeleteGlobalRef,

DeleteWeakGlobalRef,

MonitorExit,

PushLocalFrame,

PopLocalFrame.

• The return operation and memory free operation.
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APPENDIX B

INTERPROCEDURAL EXCEPTION ANALYSIS

We first describe some notations. A symbolic state S = D × X, where a property

state D = { NoExn, ChkedExn E1, . . . , ChkedExn En,

UnChkedExn UE 1, . . . , UnChkedExn UEm }, and an execution state X is a map from

variables to values in a constant-propagation lattice or Java types. Given a symbolic

state s, ps(s) is its property state and es(s) is its execution state.

A global control-flow graph = [N,E,F ], where N is a set of nodes, E is the set of

edges, and F is the set of functions. Notation src(e) denotes edge e’s source node and

dst(e) the destination node. For node n, notation In0(n) stands for its first incoming

edge and In1(n) the second (if there is one). A merger node is assumed to have two in-

coming edges. For a non-branch node, OutT (n) stands for its only outgoing edge. For a

branch node, OutT (n) stands for the true branch and OutF (n) the false branch. We as-

sume each function has a distinguished entry node, denoted by entryNode(f). Notation

fn(n) denotes the function that node n belongs to. When n stands for a function-call

node, callee(n) denotes the callee function.

α denotes a function that merges a set of symbolic states:

α(ss ) = { 〈d,
⊔

s∈ss[d]

es(s)〉 | d ∈ roots(ss) }
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where

ss [d] = { s | s ∈ ss ∧ ps(s) <: d }

roots(ss) = { d | ss[d] 6= ∅ ∧ ∀〈d′, es′〉 ∈ ss. ¬(d <: d′) }

and <: denotes the subclass relation

We use F to denote transfer functions for nodes. For instance, FMerge is the transfer

function for merger nodes.

• FMerge(n, ss1, ss2) = α(ss1
⋃

ss2).

• FCall(f, ss , ā) = α({s′|s′ = fCall(f, s, ā) ∧ s ∈ ss}), where fCall binds parameters

of f to the symbolic-evaluation results of arguments ā in symbolic state s; it also

takes care of scoping by removing bindings for variables not in the scope of f .

• FBranch(n, ss , v) = α({ s′|s ′ = fBranch(n, s, v) ∧ s ∈ ss ∧ es(s′) 6= ⊥}), where

fBranch takes advantage of the fact that the result of the branching condition is v

and adjusts the symbolic state s.

• FExit(f, ss ) = α({ s′ | s′ = fExit(f, s) ∧ s ∈ ss }), where fExit takes care of

scoping by removing variables that are only in the scope of f from the symbolic

state.

• We use FJNI to denote the transfer functions for JNI functions and we use FOther

to denote the transfer function for all other nodes.

The algorithm is formally described in Algorithms 1 and 2.
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Algorithm 1: Auxiliary procedures

procedure Add(e, nc, d, ss )

if Info(e, nc, d) 6= ss

Info(e, nc, d) := ss ;

Worklist := Worklist
⋃
{[dst(e), nc, d]};

end if

end procedure

procedure AddTrigger(n, nc, d, ss ,ā)

ss ′ := FCall(fn(n), ss , ā);

e := OutT (n);

ss ′ := α(ss ′
⋃

Info(e, nc, d));

Add(e, nc, d, ss
′);

end procedure

procedure AddToSummary(n, nc, d, ss )

ss ′ = FExit(fn(n), ss );

if Summary(fn(n), nc, d) 6= ss ′

Summary(fn(n), nc, d) := ss ′;

for each n′

c, d
′ ∈ D such that Info(In0(nc), n

′

c, d
′) 6= ∅ do

Worklist := Worklist
⋃
{[nc, n

′

c, d
′]};

end for

end if

end procedure
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Algorithm 2: Interprocedural exception analysis

Input:

Global control-flow graph=[N,E,F ];

fentry ∈ F is an entry function to be analyzed

Globals:

Worklist : 2N×N×D;

Info : (E ×N × D) → 2S;

Summary : (F ×N × D) → 2S;
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procedure solve

∀ e, n, d, Info(e, n, d) = ∅;

∀ f , n, d, Summary(f , n, d) = ∅;

e := OutT (entryNode(fentry));

Info(e, m, NoExn) := {[NoExn,⊤]};

Worklist := {[dst(e), m, NoExn]};

while Worklist 6= ∅

Remove [n, nc, d] from Worklist;

ss in := Info(In0(n), nc, d);

switch (n) do

case n ∈ Merge

ssout := FMerge(n, ss in , Info(In1(n), nc, d));

case n ∈ Branch

Add(OutT (n), nc, d, FBranch(n, ss in , T ));

Add(OutF (n), nc, d, FBranch(n, ss in , F ));

case n ∈ JNIFun

Add(OutT (n), nc, d, FJNI (n, ss in , nc, d));

case n ∈ Call(ā)

ssout := ∅;

for each d′ ∈ D such that ss in [d
′] 6= ∅ do

sm := Summary(callee(n), n, d′);

if sm 6= ∅ then

ssout := ssout
⋃

sm;

end if

AddTrigger(entryNode(callee(n)), n, d′, ss in [d
′], ā);

end for

Add(OutT (n), nc, d, α(ssout));

case n ∈ Exit

AddToSummary(n, nc, d, ss in);

case n ∈ Other

ssout := FOther(n, ss in , nc, d);

Add(OutT (n), nc, d, ssout);

end while

return Info

end procedure
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